Patents by Inventor Gisela Lin

Gisela Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230167403
    Abstract: Microfluidic devices and methods for co-encapsulation of a cell and a controlled release particle in one droplet are escribed herein. The devices and methods utilize laminar flow, high shear liquid-liquid interfaces, hydrodynamic vortices, and/or acoustic focusing to increase co-encapsulation efficiency. The precise variation of the droplets microenvironment is enabled by the controlled release particle co-encapsulated with the single cell in each droplet. This capability, coupled with established detection methods, provides an important tool for precise, single cell analysis.
    Type: Application
    Filed: May 4, 2021
    Publication date: June 1, 2023
    Inventors: Abraham P. Lee, Gisela Lin, Yue Yun, Elizabeth Chatt, Marzieh Ataei, Jui-Yi Chen
  • Publication number: 20220387999
    Abstract: The present invention is directed to systems and devices that allow for separation of cells based on size and electric properties and for high-throughput cell sorting. The system may comprise a microfluidic platform having a main microfluidic channel and cavity acoustic transducers (CATs). The microfluidic platform may be coupled to an external acoustic source. The system may further comprise a fluid disposed through the main microfluidic channel comprising cells having different sizes and electric properties. The fluid may intersect the CATs to form one or more interfaces. The system may further comprise electrodes underneath the microfluidic platform. The CATs may oscillate the interfaces to produce one or more microstreaming vortices, such that each microstreaming vortex is capable of selectively trapping cells based on size. The set of electrodes may apply an AC to cause the cells to move relative to the set of electrodes based on electric properties.
    Type: Application
    Filed: August 19, 2022
    Publication date: December 8, 2022
    Inventors: Abraham P. Lee, Gisela Lin, Ruoyu Jiang, Mohammad Aghaamoo, Yu-Hsi Chen, Braulio Cárdenas Benítez
  • Patent number: 11517901
    Abstract: A passive, hydrodynamic technique implemented using a microfluidic device to perform co-encapsulation of samples in droplets and sorting of said droplets is described herein. The hydrodynamic technique utilizes laminar flows and high shear liquid-liquid interfaces at a microfluidic junction to encapsulate samples in the droplets. A sorting mechanism is implemented to separate sample droplets from empty droplets. This technique can achieve a one-one-one encapsulation efficiency of about 80% and can significantly improve the droplet sequencing and related applications in single cell genomics and proteomics.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: December 6, 2022
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Abraham P. Lee, Gopakumar Kamalakshakurup, Mohammad Aghaamoo, Xuan Li, Gisela Lin, Xuhao Luo, Marzieh Ataei, Michelle A. Digman, Francesco Palomba
  • Publication number: 20200108393
    Abstract: A passive, hydrodynamic technique implemented using a microfluidic device to perform co-encapsulation of samples in droplets and sorting of said droplets is described herein. The hydrodynamic technique utilizes laminar flows and high shear liquid-liquid interfaces at a microfluidic junction to encapsulate samples in the droplets. A sorting mechanism is implemented to separate sample droplets from empty droplets. This technique can achieve a one-one-one encapsulation efficiency of about 80% and can significantly improve the droplet sequencing and related applications in single cell genomics and proteomics.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 9, 2020
    Inventors: Abraham P. Lee, Gopakumar Kamalakshakurup, Mohammad Aghaamoo, Xuan Li, Gisela Lin, Xuhao Luo, Marzieh Ataei, Michelle A. Digman, Francesco Palomba