Patents by Inventor Giso Hahn

Giso Hahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140021472
    Abstract: A printable medium is proposed, such as can be used, for example, during the production of metal contacts for silicon solar cells which are covered with a passivation layer on a surface of a silicon substrate. A corresponding production method and a correspondingly produced solar cell are also disclosed. The printable medium contains at least one medium that etches the passivation layer and metal particles such as nickel particles, for example. By locally applying the printable medium to the passivation layer and subsequent heating, the passivation layer can be opened locally with the aid of the etching medium. As a result, the nickel particles can form a mechanical and electrical contact with the substrate surface, preferably with the formation of a nickel silicide layer. The printable medium and the production method made possible therewith are cost-effective owing to the use of nickel particles, for example, and allow both good electrical contact and avoidance of undesirable high-temperature steps.
    Type: Application
    Filed: April 5, 2012
    Publication date: January 23, 2014
    Applicant: UNIVERSITÄT KONSTANZ
    Inventors: Giso Hahn, Bernd Raabe, Stefan Braun
  • Patent number: 8586396
    Abstract: A method is presented for producing a silicon solar cell with a back-etched emitter preferably with a selective emitter and a corresponding solar cell. According to one aspect, the method comprises the following method steps: producing a two-dimensionally extending emitter at an emitter surface of a solar cell substrate; applying an etching barrier onto first partial zones of the emitter surface; etching the emitter surface in second partial zones of the emitter surface not covered by the etching barrier; removing the etching barrier; and producing metal contacts at the first partial zones. During the method, especially during the etching of the emitter surface in the second partial zones, a porous silicon layer is advantageously produced, which is then oxidized. This oxidized porous silicon layer can subsequently be etched away together with any phosphorus glass that may be present.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: November 19, 2013
    Assignees: Universität Konstanz, Fraunhofer Gesellschaft zur Förderung der Angewandten Forschung E.V.
    Inventors: Giso Hahn, Helge Haverkamp, Bernd Raabe, Amir Dastgheib-Shirazi, Felix Book
  • Publication number: 20130153025
    Abstract: The invention relates to a method for producing a solar cell and to a solar cell which can be produced accordingly. On a solar cell substrate, first a ridged texture, which may for example comprise pyramids produced by alkaline etching, is formed both on a front face and on a rear face of the solar cell substrate. Then an etching barrier layer is applied to the front face of the solar cell substrate. Next the texture on the rear face of, the solar cell substrate is smoothed by etching in an isotropically acting etching solution which for example contains acid, wherein the front face is protected by the etching barrier layer. Thus, ridged structures on the rear face can be avoided and in this way reflection can be increased and surface passivation can be improved, both of which can lead to an increased potential efficiency.
    Type: Application
    Filed: August 23, 2011
    Publication date: June 20, 2013
    Applicant: UNIVERSITÄT KONSTANZ
    Inventors: Giso Hahn, Amir Dastgheib-Shirazi
  • Patent number: 8263176
    Abstract: A method for fabricating a photovoltaic element with stabilized efficiency is proposed. The method comprises the following steps: preparing a boron-doped, oxygen-containing silicon substrate; forming an emitter layer on a surface of the silicon substrate; and a stabilization treatment step. The stabilization treatment step comprises keeping the temperature of the substrate during a treatment time within a selectable temperature range having a lower temperature limit of 50° C., preferably 90° C., more preferably 130° C. and even more preferably 160° C. and an upper temperature limit of 230° C., preferably 210° C., more preferably 190° C. and even more preferably 180° C., and generating excess minority carriers in the silicon substrate during the treatment time, for example, by illuminating the substrate or by applying an external voltage. This method can be used to fabricate a photovoltaic element, e.g.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: September 11, 2012
    Assignee: Universität Konstanz
    Inventors: Axel Herguth, Gunnar Schubert, Martin Käs, Giso Hahn, Ihor Melnyk
  • Publication number: 20120129355
    Abstract: A method for texturing a surface of a semiconductor substrate is proposed. Therein, the surface is etched with an etching solution which etches the semiconductor substrate material, wherein a wetting agent is added to the etching solution, which wetting agent contains water-soluble polymers, in particular in the form of polyvinyl alcohol. Therein, the process temperatures of the etching solution can be increased in comparison to conventional texturing methods, as a result of which the process time can be reduced. Process guidance is simplified and process stability is increased. A suitable texturing device for carrying out the method can, in addition to a basin for accommodating the etching solution and a heater for heating the etching solution to at least 85° C.
    Type: Application
    Filed: May 20, 2010
    Publication date: May 24, 2012
    Applicant: Universitaet Konstanz
    Inventors: Giso Hahn, Helge Haverkamp, Jose Nestor Ximello-Quiebras
  • Publication number: 20110162716
    Abstract: A method and device for fabricating a photovoltaic element with stabilized efficiency is proposed. The method comprises the following steps: preparing a boron-doped, oxygen-containing silicon substrate; forming an emitter layer on a surface of the silicon substrate; and a stabilization treatment step. The stabilization treatment step comprises keeping the temperature of the substrate during a treatment time within a selectable temperature range having a lower temperature limit of 50° C., preferably 90° C., more preferably 130° C. and even more preferably 160° C. and an upper temperature limit of 230° C., preferably 210° C., more preferably 190° C. and even more preferably 180° C., and generating excess minority carriers in the silicon substrate during the treatment time, for example, by illuminating the substrate or by applying an external voltage. This method can be used to fabricate a photovoltaic element, e.g.
    Type: Application
    Filed: December 17, 2010
    Publication date: July 7, 2011
    Applicant: Universitat Konstanz
    Inventors: Axel Herguth, Gunnar Schubert, Giso Hahn, Ihor Melnyk, Martin Käs
  • Publication number: 20100243036
    Abstract: A method for fabricating a photovoltaic element with stabilised efficiency is proposed. The method comprises the following steps: preparing a boron-doped, oxygen-containing silicon substrate; forming an emitter layer on a surface of the silicon substrate; and a stabilisation treatment step. The stabilisation treatment step comprises keeping the temperature of the substrate during a treatment time within a selectable temperature range having a lower temperature limit of 50° C., preferably 90° C., more preferably 130° C. and even more preferably 160° C. and an upper temperature limit of 230° C., preferably 210° C., more preferably 190° C. and even more preferably 180° C., and generating excess minority carriers in the silicon substrate during the treatment time, for example, by illuminating the substrate or by applying an external voltage. This method can be used to fabricate a photovoltaic element, e.g.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 30, 2010
    Applicant: Universitat Konstanz
    Inventors: Axel Herguth, Gunnar Schubert, Martin Käs, Giso Hahn, Ihor Melnyk
  • Publication number: 20100218826
    Abstract: A method is presented for producing a silicon solar cell with a back-etched emitter preferably with a selective emitter and a corresponding solar cell. According to one aspect, the method comprises the following method steps: producing a two-dimensionally extending emitter at an emitter surface of a solar cell substrate; applying an etching barrier onto first partial zones of the emitter surface; etching the emitter surface in second partial zones of the emitter surface not covered by the etching barrier; removing the etching barrier; and producing metal contacts at the first partial zones. During the method, especially during the etching of the emitter surface in the second partial zones, a porous silicon layer is advantageously produced, which is then oxidised. This oxidised porous silicon layer can subsequently be etched away together with any phosphorus glass that may be present.
    Type: Application
    Filed: July 23, 2008
    Publication date: September 2, 2010
    Applicants: Universität Konstanz, Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E.V.
    Inventors: Giso Hahn, Helge Haverkamp, Bernd Raabe, Amir Dastgheib-Shirazi, Felix Book