Patents by Inventor Giuseppe FIORENTINO

Giuseppe FIORENTINO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944965
    Abstract: A microfluidic device, a diagnostic device including the microfluidic device and a method for making the microfluidic device are provided. The microfluidic device includes: (i) a transparent substrate comprising a cavity, the cavity opening up to a top of the transparent substrate; (ii) a transparent layer covering the cavity, and (iii) a semiconductor substrate over the transparent layer and the transparent substrate, wherein the semiconductor substrate comprises a through hole overlaying the cavity and exposing the transparent layer.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: April 2, 2024
    Assignee: Imec vzw
    Inventors: Giuseppe Fiorentino, Simone Severi, Aurelie Humbert
  • Publication number: 20210300752
    Abstract: A method for fabricating a microfluidic device includes providing an assembly that includes a first silicon substrate having a hydrophilic silicon oxide top surface that includes a microfluidic channel and a second silicon substrate having a hydrophilic silicon oxide bottom surface directly bonded on the top surface of the first silicon substrate, the second silicon substrate including fluidic access holes giving fluidic access to the microfluidic channel. The method also includes exposing the assembly to oxidative species including one or more oxygen atoms and to heat so as to form silicon oxide at a surface of the access holes and of the microfluidic channel.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 30, 2021
    Inventors: Giuseppe Fiorentino, Aurelie Humbert, Simone Severi, Benjamin Jones
  • Publication number: 20200406255
    Abstract: A microfluidic device, a diagnostic device including the microfluidic device and a method for making the microfluidic device are provided. The microfluidic device includes: (i) a transparent substrate comprising a cavity, the cavity opening up to a top of the transparent substrate; (ii) a transparent layer covering the cavity, and (iii) a semiconductor substrate over the transparent layer and the transparent substrate, wherein the semiconductor substrate comprises a through hole overlaying the cavity and exposing the transparent layer.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 31, 2020
    Inventors: Giuseppe Fiorentino, Simone Severi, Aurelie Humbert
  • Patent number: 10481348
    Abstract: There is provided an optical system for coupling light into a waveguide. The optical system comprising a coupler arranged at a portion of the waveguide. The coupler has a surface with a grating structure for directing light into the waveguide formed therein. A cladding layer embeds the coupler and an optical path changing structure is formed in the cladding layer. The optical path changing structure has a refractive surface and a reflective surface, each forming an acute angle with respect to the surface of the coupler. Light which enters the optical path changing structure through the refractive surface will be refracted and directed towards the reflective surface. The reflective surface is arranged to reflect the light such that it is directed towards the grating structure of the coupler along a direction suitable for efficient coupling of light into the waveguide.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: November 19, 2019
    Assignee: miDiagnostics NV
    Inventors: Jeonghwan Song, Pol Van Dorpe, Giuseppe Fiorentino, Philippe Soussan, Xavier Rottenberg
  • Publication number: 20180074271
    Abstract: There is provided an optical system for coupling light into a waveguide. The optical system comprising a coupler arranged at a portion of the waveguide. The coupler has a surface with a grating structure for directing light into the waveguide formed therein. A cladding layer embeds the coupler and an optical path changing structure is formed in the cladding layer. The optical path changing structure has a refractive surface and a reflective surface, each forming an acute angle with respect to the surface of the coupler. Light which enters the optical path changing structure through the refractive surface will be refracted and directed towards the reflective surface. The reflective surface is arranged to reflect the light such that it is directed towards the grating structure of the coupler along a direction suitable for efficient coupling of light into the waveguide.
    Type: Application
    Filed: August 29, 2017
    Publication date: March 15, 2018
    Inventors: Jeonghwan SONG, Pol Van DORPE, Giuseppe FIORENTINO, Philippe SOUSSAN, Xavier ROTTENBERG