Patents by Inventor Giuseppe Gullotto

Giuseppe Gullotto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250242918
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Application
    Filed: January 6, 2025
    Publication date: July 31, 2025
    Inventors: Ronald A. Shields, Peter Anthony Settles, Willard F. Hagan, Giuseppe Gullotto
  • Patent number: 12227294
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Grant
    Filed: March 15, 2023
    Date of Patent: February 18, 2025
    Assignee: AmSafe, Inc.
    Inventors: Ronald A. Shields, Peter Anthony Settles, Willard F. Hagan, Giuseppe Gullotto
  • Publication number: 20230373633
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Application
    Filed: March 15, 2023
    Publication date: November 23, 2023
    Inventors: Ronald A. Shields, Peter Anthony Settles, Willard F. Hagan, Giuseppe Gullotto
  • Patent number: 11628937
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: April 18, 2023
    Assignee: AmSafe, Inc.
    Inventors: Ronald A. Shields, Peter Anthony Settles, Willard F. Hagan, Giuseppe Gullotto
  • Patent number: 11021123
    Abstract: An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: June 1, 2021
    Assignee: AmSafe, Inc.
    Inventors: Peter Anthony Settles, Scott Fink, Giuseppe Gullotto
  • Patent number: 10569890
    Abstract: An airbag assembly for leg flail protection and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present technology can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag stowed within the cavity, and an inflator operably coupled to the airbag. The airbag can be configured to deploy through the opening of the housing during a crash or other significant dynamic event. The airbag can deploy outwardly from the side-facing seat to reduce occupant leg rotation during the crash or other significant dynamic event. The airbag can be pushed out of the housing before it is fully inflated. The airbag can be stowed and include folded first and second opposing side portions such that when the airbag is deployed, the portion nearest the occupant unfurls toward the occupant prior to the other portion farthest from the occupant unfurling in a direction away from the occupant.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: February 25, 2020
    Assignee: AmSafe, Inc.
    Inventors: Trenton Dirk Moeller, Giuseppe Gullotto
  • Publication number: 20200055603
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Application
    Filed: June 26, 2019
    Publication date: February 20, 2020
    Inventors: Ronald A. Shields, Peter Anthony Settles, Willard F. Hagan, Giuseppe Gullotto
  • Publication number: 20190291674
    Abstract: An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 26, 2019
    Inventors: Peter Anthony Settles, Scott Fink, Giuseppe Gullotto
  • Patent number: 10391960
    Abstract: An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 27, 2019
    Assignee: AmSafe, Inc.
    Inventors: Peter Anthony Settles, Scott Fink, Giuseppe Gullotto
  • Patent number: 10364034
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: July 30, 2019
    Assignee: AmSafe, Inc.
    Inventors: Ronald A. Shields, Peter Anthony Settles, Willard F. Hagan, Giuseppe Gullotto
  • Publication number: 20180244229
    Abstract: An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 30, 2018
    Inventors: Peter Anthony Settles, Scott Fink, Giuseppe Gullotto
  • Publication number: 20160096625
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Application
    Filed: August 31, 2015
    Publication date: April 7, 2016
    Inventors: Ronald A. Shields, Peter Anthony Settles, Willard F. Hagan, Giuseppe Gullotto
  • Publication number: 20160052636
    Abstract: An airbag assembly for leg flail protection and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present technology can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag stowed within the cavity, and an inflator operably coupled to the airbag. The airbag can be configured to deploy through the opening of the housing during a crash or other significant dynamic event. The airbag can deploy outwardly from the side-facing seat to reduce occupant leg rotation during the crash or other significant dynamic event. The airbag can be pushed out of the housing before it is fully inflated. The airbag can be stowed and include folded first and second opposing side portions such that when the airbag is deployed, the portion nearest the occupant unfurls toward the occupant prior to the other portion farthest from the occupant unfurling in a direction away from the occupant.
    Type: Application
    Filed: July 24, 2015
    Publication date: February 25, 2016
    Inventors: Trenton Dirk Moeller, Giuseppe Gullotto
  • Patent number: 9156558
    Abstract: An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 13, 2015
    Assignee: AmSafe, Inc.
    Inventors: Ronald A. Shields, Peter A. Settles, Willard F. Hagan, Giuseppe Gullotto
  • Publication number: 20150158590
    Abstract: Occupant restraint systems for use with aircraft occupant restraint systems and other restraint systems, and associated devices and methods are disclosed herein. In one embodiment, an occupant restraint system can include a flexible web configured to extend across at least a portion of a lap of an occupant positioned on a seat of an aircraft, and an electronically-actuated pretensioner operably coupled to an end portion of the web. The system can also include a sensor assembly operably coupled to the pretensioner, wherein the sensor assembly is configured to send an electrical signal to the pretensioner in response to an aircraft acceleration or deceleration above a preset magnitude, and wherein, in response to receiving the electrical signal from the sensor assembly, the pretensioner is configured to automatically increase tension on the web.
    Type: Application
    Filed: December 9, 2014
    Publication date: June 11, 2015
    Inventors: William J. Gehret, Giuseppe Gullotto, Robert Scott