Patents by Inventor Glen C. King

Glen C. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10256305
    Abstract: An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: April 9, 2019
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Sang Hyouk Choi, Yeonjoon Park, Glen C. King, Hyun-Jung Kim, Kunik Lee
  • Patent number: 10147863
    Abstract: Systems, methods, and devices of the various embodiments provide pyroelectric sandwich thermal energy harvesters. In the various embodiment pyroelectric sandwich thermal energy harvesters, generated electrical energy may be stored in a super-capacitor/battery as soon as it is generated. The various embodiment pyroelectric sandwich thermal energy harvesters may harvest electrical energy from any environment where temperature variations occur. The various embodiment pyroelectric sandwich thermal energy harvesters may be power sources for space equipment and vehicles in space and/or on earth, as well as the for wireless sensor networks, such as health monitoring systems of oil pipes, aircraft, bridges, and buildings.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: December 4, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Tian-Bing Xu, Jin Ho Kang, Emilie J. Siochi, Glen C. King
  • Patent number: 9835570
    Abstract: An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: December 5, 2017
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Yeonjoon Park, Hyun Jung Kim, Jonathan R. Skuza, Kunik Lee, Glen C. King, Sang Hyouk Choi
  • Publication number: 20170179233
    Abstract: An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.
    Type: Application
    Filed: March 3, 2017
    Publication date: June 22, 2017
    Inventors: Sang Hyouk Choi, Yeonjoon Park, Glen C. King, Hyun-Jung Kim, Kunik Lee
  • Patent number: 9614026
    Abstract: An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhombohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 4, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sang Hyouk Choi, Yeonjoon Park, Glen C. King, Hyun-Jung Kim, Kunik Lee
  • Patent number: 9446953
    Abstract: Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 20, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jae-Woo Kim, Sang H. Choi, Sr., Peter T. Lillehei, Sang-Hyon Chu, Yeonjoon Park, Glen C. King, James R. Elliott
  • Publication number: 20160104831
    Abstract: Systems, methods, and devices of the various embodiments provide pyroelectric sandwich thermal energy harvesters. In the various embodiment pyroelectric sandwich thermal energy harvesters, generated electrical energy may be stored in a super-capacitor/battery as soon as it is generated. The various embodiment pyroelectric sandwich thermal energy harvesters may harvest electrical energy from any environment where temperature variations occur. The various embodiment pyroelectric sandwich thermal energy harvesters may be power sources for space equipment and vehicles in space and/or on earth, as well as the for wireless sensor networks, such as health monitoring systems of oil pipes, aircraft, bridges, and buildings.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 14, 2016
    Inventors: Tian-Bing Xu, Jin Ho Kang, Emilie J. Siochi, Glen C. King
  • Publication number: 20150078526
    Abstract: An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blende structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventors: Yeonjoon Park, Hyun Jung KIM, Jonathan R. SKUZA, Kunik LEE, Glen C. KING, Sang Hyouk CHOI
  • Patent number: 8913124
    Abstract: A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: December 16, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang Hyouk Choi, Glen C. King, James R. Elliott, Albert L. Dimarcantonio
  • Publication number: 20140264459
    Abstract: An electronic device includes a trigonal crystal substrate defining a (0001) C-plane. The substrate may comprise Sapphire or other suitable material. A plurality of rhomhohedrally aligned SiGe (111)-oriented crystals are disposed on the (0001) C-plane of the crystal substrate. A first region of material is disposed on the rhombohedrally aligned SiGe layer. The first region comprises an intrinsic or doped Si, Ge, or SiGe layer. The first region can be layered between two secondary regions comprising n+doped SiGe or n+doped Ge, whereby the first region collects electrons from the two secondary regions.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: U.S.A. as represented by the National Aeronautics and Space Administration
    Inventors: Sang Hyouk Choi, Yeonjoon Park, Glen C. King, Hyun-Jung Kim, Kunik Lee
  • Patent number: 8691612
    Abstract: Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: April 8, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Hyun-Jung Kim, Sang Hyouk Choi, Glen C. King, Yeonjoon Park, Kunik Lee
  • Patent number: 8529825
    Abstract: A new fabrication method for nanovoids-imbedded bismuth telluride (Bi—Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi—Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: September 10, 2013
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Sang-Hyon Chu, Sang H. Choi, Jae-Woo Kim, Yeonjoon Park, James R. Elliott, Glen C. King, Diane M. Stoakley
  • Patent number: 8294989
    Abstract: An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 23, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang H. Choi, Glen C. King, James R. Elliott
  • Publication number: 20120225513
    Abstract: Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 6, 2012
    Applicant: U. S.A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Hyun-Jung Kim, Sang Hyouk Choi, Glen C. King, Yeonjoon Park, Kunik Lee
  • Patent number: 8257491
    Abstract: Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: September 4, 2012
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang Hyouk Choi, Glen C. King, James R. Elliott
  • Publication number: 20120200696
    Abstract: A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.
    Type: Application
    Filed: February 3, 2011
    Publication date: August 9, 2012
    Applicant: U.S.A as represented by the Administrator of the N.A.S.A.
    Inventors: Yeonjoon Park, Sang Hyouk Choi, Glen C. King, James R. Elliott, Albert L. Dimarcantonio
  • Patent number: 8226767
    Abstract: “Super-hetero-epitaxial” combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a “Tri-Unity” system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: July 24, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang H. Choi, Glen C. King, James R. Elliott
  • Patent number: 8217143
    Abstract: Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: July 10, 2012
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Jae-Woo Kim, Sang H. Choi, Peter T. Lillehei, Sang-Hyon Chu, Yeonjoon Park, Glen C. King, James R. Elliott, Jr.
  • Patent number: 8174695
    Abstract: A spectrometer system includes an array of micro-zone plates (MZP) each having coaxially-aligned ring gratings, a sample plate for supporting and illuminating a sample, and an array of photon detectors for measuring a spectral characteristic of the predetermined wavelength. The sample plate emits an evanescent wave in response to incident light, which excites molecules of the sample to thereby cause an emission of secondary photons. A method of detecting the intensity of a selected wavelength of incident light includes directing the incident light onto an array of MZP, diffracting a selected wavelength of the incident light onto a target focal point using the array of MZP, and detecting the intensity of the selected portion using an array of photon detectors. An electro-optic layer positioned adjacent to the array of MZP may be excited via an applied voltage to select the wavelength of the incident light.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: May 8, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sang H. Choi, Yeonjoon Park, Glen C. King, James R. Elliott
  • Patent number: 8094306
    Abstract: A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: January 10, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Glen C. King, James R. Elliott, Sang H. Choi