Patents by Inventor Glen E. Fryxell

Glen E. Fryxell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6733835
    Abstract: According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: May 11, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Glen E. Fryxell, Thomas S. Zemanian, Jun Liu, Yongsoon Shin
  • Patent number: 6723426
    Abstract: The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: April 20, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Glen E. Fryxell, William D. Samuels, Kevin L. Simmons
  • Publication number: 20040001943
    Abstract: The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 1, 2004
    Inventors: Kentin L. Alford, Kevin L. Simmons, William D. Samuels, Thomas S. Zemanian, Jun Liu, Yongsoon Shin, Glen E. Fryxell
  • Publication number: 20030148032
    Abstract: According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry.
    Type: Application
    Filed: January 17, 2003
    Publication date: August 7, 2003
    Inventors: Glen E. Fryxell, Thomas S. Zemanian, Jun Liu, Yongsoon Shin
  • Publication number: 20030129312
    Abstract: According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry.
    Type: Application
    Filed: January 17, 2003
    Publication date: July 10, 2003
    Inventors: Glen E. Fryxell, Thomas S. Zemanian, Jun Liu, Yongsoon Shin
  • Publication number: 20030129406
    Abstract: According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry.
    Type: Application
    Filed: January 17, 2003
    Publication date: July 10, 2003
    Inventors: Glen E. Fryxell, Thomas S. Zemanian, Jun Liu, Yongsoon Shin
  • Patent number: 6531224
    Abstract: According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: March 11, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Glen E. Fryxell, Thomas S. Zemanian, Jun Liu, Yongsoon Shin
  • Patent number: 6383466
    Abstract: The present invention is a method of dehydroxylating a silica surface that is hydroxylated having the steps of exposing the silica surface separately to a silicon organic compound and a dehydroxylating gas. Exposure to the silicon organic compound can be in liquid, gas or solution phase, and exposure to a dehydroxylating gas is typically at elevated temperatures. In one embodiment, the improvement of the dehydroxylation procedure is the repetition of the soaking and dehydroxylating gas exposure. In another embodiment, the improvement is the use of an inert gas that is substantially free of hydrogen. In yet another embodiment, the present invention is the combination of the two-step dehydroxylation method with a surfactant templating method of making a mesoporous film.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: May 7, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Karel Domansky, Glen E. Fryxell, Jun Liu, Nathan J. Kohler, Suresh Baskaran
  • Publication number: 20020034626
    Abstract: The present invention is a mesoporous silica film having a low dielectric constant and method of making having the steps of combining a surfactant in a silica precursor solution, spin-coating a film from this solution mixture, forming a partially hydroxylated mesoporous film, and dehydroxylating the hydroxylated film to obtain the mesoporous film. It is advantageous that the small polyoxyethylene ether surfactants used in spin-coated films as described in the present invention will result in fine pores smaller on average than about 20 nm. The resulting mesoporous film has a dielectric constant less than 3, which is stable in moist air with a specific humidity. The present invention provides a method for superior control of film thickness and thickness uniformity over a coated wafer, and films with low dielectric constant.
    Type: Application
    Filed: April 18, 2001
    Publication date: March 21, 2002
    Inventors: Jun Liu, Karel Domansky, Xiaohong Li, Glen E. Fryxell, Suresh Baskaran, Nathan J. Kohler, Suntharampillai Thevuthasan, Christopher A. Coyle, Jerome C. Birnbaum
  • Patent number: 6329017
    Abstract: The present invention is a mesoporous silica film having a low dielectric constant and method of making having the steps of combining a surfactant in a silica precursor solution, spin-coating a film from this solution mixture, forming a partially hydroxylated mesoporous film, and dehydroxylating the hydroxylated film to obtain the mesoporous film. It is advantageous that the small polyoxyethylene ether surfactants used in spin-coated films as described in the present invention will result in fine pores smaller on average than about 20 nm. The resulting mesoporous film has a dielectric constant less than 3, which is stable in moist air with a specific humidity. The present invention provides a method for superior control of film thickness and thickness uniformity over a coated wafer, and films with low dielectric constant.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: December 11, 2001
    Assignee: Battelle Memorial Institute
    Inventors: Jun Liu, Karel Domansky, Xiaohong Li, Glen E. Fryxell, Suresh Baskaran, Nathan J. Kohler, Suntharampillai Thevuthasan, Christopher A. Coyle, Jerome C. Birnbaum
  • Patent number: 6326326
    Abstract: According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surface(s) of the pore(s).
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: December 4, 2001
    Assignee: Battelle Memorial Institute
    Inventors: Xiangdong Feng, Jun Liu, Glen E. Fryxell
  • Publication number: 20010008697
    Abstract: The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.
    Type: Application
    Filed: February 27, 2001
    Publication date: July 19, 2001
    Inventors: Glen E. Fryxell, William D. Samuels, Kevin L. Simmons