Patents by Inventor Glen E. Phillips

Glen E. Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190112537
    Abstract: A Flexicoking™ unit which retains the capability of converting heavy oil feeds to lower boiling liquid hydrocarbon products while making a fuel gas from rejected coke to provide only a minimal coke yield. The heater section of the conventional three section unit (reactor, heater, gasifier) is eliminated and all or a portion of the cold coke from the reactor is passed directly to the gasifier which is modified by the installation of separators to remove coke particles from the product gas which is taken out of the gasifier for ultization. In one embodiment, a portion of cold coke is transferred directly from the reactor to the gasifier, and another portion of cold coke is combined with hot, partly gasified coke particles transferred directly from the gasifier to the reactor. The hot coke from the gasifier is passed directly to the coking zone of the reactor to supply heat to support the endothermic cracking reactions and supply seed nuclei for the formation of coke in the reactor.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Inventors: Suriyanarayanan Rajagopalan, Glen E. Phillips, Mohsen N. Harandi
  • Publication number: 20170233667
    Abstract: A method for utilizing the heating value of clarified shiny oil (CSO) by in which clarified slurry oil from the settler of a fluid catalytic cracking unit is introduced as feed to the gasifier of a Flexicoking unit where it is reacted at high temperature with the air and steam to produce additional heat. In this way, the heating value of the CSO is better utilized as refinery fuel gas and plant economics are enhanced.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 17, 2017
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, Glen E. Phillips
  • Publication number: 20150368572
    Abstract: A Flexicoking™ unit which retains the capability of converting heavy oil feeds to lower boiling liquid hydrocarbon products while making a fuel gas from rejected coke to provide only a minimal coke yield. The heater section of the conventional three section unit (reactor, heater, gasifier) is eliminated and the cold coke from the reactor is passed directly to the gasifier which is modified by the installation of separators to remove coke particles from the product gas which is taken out of the gasifier for ultization. Hot coke from the gasifier is passed directly to the coking zone of the reactor to supply heat to support the endothermic cracking reactions and supply seed nuclei for the formation of coke in the reactor. Coke is withdrawn from the gasifier to remove excess coke and to purge the system of metals and ash.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 24, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Suriyanarayanan Rajagopalan, Glen E. Phillips, Mohsen N. Harandi
  • Patent number: 8658025
    Abstract: Biomass is used as a co-feed for a heavy petroleum oil coking process to improve the operation of the coking process and to utilize biomaterial for the production of transportation fuels. The coking process may be a delayed coking process or a fluidized bed coking process and in each case, the presence of the biomass will decrease the coke drying time so reducing coke handling problems in the unit besides forming a superior coke product. In the case of a fluidized bed coking process using a gasifier for the coke, the addition of an alkali metal salt improves the operation of the gasifier.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen, Walter Weissman
  • Patent number: 8603325
    Abstract: A biomass pyrolysis oil is used as a co-feed for a heavy petroleum oil coking process to improve the operation of the coking process and to utilize biomaterial for the production of transportation fuels. The coking process may be a delayed coking process or a fluidized bed coking process and in each case, the presence of the biomass pyrolysis oil will decrease the coke drying time while reducing coke handling problems in the unit besides forming a superior coke product. In the case of a fluidized bed coking process using a gasifier for the coke, the addition of an alkali metal salt improves the operation of the gasifier.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: December 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen, Walter Weissman
  • Patent number: 8500829
    Abstract: A pyrolysis oil derived from a lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the oil with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass oil from 0.5:1 to 5.0:1, to dissolve the oil into the reaction mixture and depolymerize, deoxygenate and hydrogenate the oil, so converting it into liquid transportation fuel precursors.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Patent number: 8502003
    Abstract: A lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the biomass material with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass material from 0.5:1 to 5.0:1, to dissolve the biomass material into the reaction mixture and depolymerize, deoxygenate and hydrogenate the lignocellulose biomass material, so converting the biomass material into liquid transportation fuel precursors.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Patent number: 8480765
    Abstract: Biomass pyrolysis oil is converted into precursors for hydrocarbon transportation fuels by contacting the oil with liquid superheated water or supercritical water to depolymerize and deoxygenate the components of the oil and form the transportation fuel precursors. Temperatures above 200° C. and preferably above 300° C. are preferred with supercritical water at temperatures above 374° C. and pressures above 22 MPA providing the capability for fast conversion rates.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: July 9, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Glen E. Phillips, Simon R. Kelemen
  • Publication number: 20110232161
    Abstract: Biomass pyrolysis oil is converted into precursors for hydrocarbon transportation fuels by contacting the oil with liquid superheated water or supercritical water to depolymerize and deoxygenate the components of the oil and form the transportation fuel precursors. Temperatures above 200° C. and preferably above 300° C. are preferred with supercritical water at temperatures above 374° C. and pressures above 22 MPA providing the capability for fast conversion rates.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN
  • Publication number: 20110232160
    Abstract: Biomass material is converted into precursors for hydrocarbon transportation fuels by contacting the biomass with liquid superheated water or supercritical water to depolymerize and deoxygenate the biomass into the transportation fuel precursors. Temperatures above 200° C. and preferably above 300° C. are preferred with supercritical water at temperatures above 374° C. and pressures above 22 MPa providing a capability for higher conversion rates.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN
  • Publication number: 20110232163
    Abstract: A pyrolysis oil derived from a lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the oil with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass oil from 0.5:1 to 5.0:1, to dissolve the oil into the reaction mixture and depolymerize, deoxygenate and hydrogenate the oil, so converting it into liquid transportation fuel precursors.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN
  • Publication number: 20110232164
    Abstract: A biomass pyrolysis oil is used as a co-feed for a heavy petroleum oil coking process to improve the operation of the coking process and to utilize biomaterial for the production of transportation fuels. The coking process may be a delayed coking process or a fluidized bed coking process and in each case, the presence of the biomass pyrolysis oil will decrease the coke drying time while reducing coke handling problems in the unit besides forming a superior coke product. In the case of a fluidized bed coking process using a gasifier for the coke, the addition of an alkali metal salt improves the operation of the gasifier.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN, Walter WEISSMAN
  • Publication number: 20110233042
    Abstract: Biomass is used as a co-feed for a heavy petroleum oil coking process to improve the operation of the coking process and to utilize biomaterial for the production of transportation fuels. The coking process may be a delayed coking process or a fluidized bed coking process and in each case, the presence of the biomass will decrease the coke drying time so reducing coke handling problems in the unit besides forming a superior coke product. In the case of a fluidized bed coking process using a gasifier for the coke, the addition of an alkali metal salt improves the operation of the gasifier.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN, Walter WEISSMAN
  • Publication number: 20110232162
    Abstract: A lignocellulosic biomass material is converted into precursors for liquid hydrocarbon transportation fuels by contacting the biomass material with water and carbon monoxide at elevated temperature, typically from 280 to 350° C., an elevated pressure, typically a total system pressure of 12 to 30 MPa and a CO partial pressure from 5 to 10 MPa and a weight ratio of water:biomass material from 0.5:1 to 5.0:1, to dissolve the biomass material into the reaction mixture and depolymerize, deoxygenate and hydrogenate the lignocellulose biomass material, so converting the biomass material into liquid transportation fuel precursors.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael SISKIN, Glen E. PHILLIPS, Simon R. KELEMEN
  • Patent number: 7914668
    Abstract: The invention relates to a thermal conversion process for continuously producing hydrocarbon vapor and continuously removing a free-flowing coke. The coke, such as a shot coke, can be withdrawn continuously via, e.g., a staged lock hopper system.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 29, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Michael Siskin, Christopher P. Eppig, Glen E. Phillips, Te-Hung Chen, Charles J. Mart
  • Patent number: 7815775
    Abstract: A method for coke removal in delayed coker drums is provided. The method comprises the steps of draining from the drum of substantially free-flowing coke, performing a vibration signature analysis on the drum to identify whether and where any coke remains attached to the interior wall of the drum after the draining step, and cutting the coke from the areas identified by the signature analysis step.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Glen E. Phillips, Charles John Mart
  • Patent number: 7686940
    Abstract: This invention relates to a process for reducing fouling of equipment used in fluidized bed thermal conversion processes such as fluid coking and FLEXICOKING™. Acoustic energy is used to acoustically agglomerate fine mists created during the coking process. The agglomerated mists are then carried along with the circulating coke instead of depositing on coking equipment.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Glen E. Phillips, Leo D. Brown, Michael Siskin
  • Publication number: 20090057126
    Abstract: A method for coke removal in delayed coker drums is provided. The method comprises the steps of draining from the drum of substantially free-flowing coke, performing a vibration signature analysis on the drum to identify whether and where any coke remains attached to the interior wall of the drum after the draining step, and cutting the coke from the areas identified by the signature analysis step.
    Type: Application
    Filed: August 27, 2007
    Publication date: March 5, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Glen E. Phillips, Charles John Mart
  • Patent number: 6860985
    Abstract: The invention relates to a method for improving yield in petroleum streams derived from coking processes. In a preferred embodiment, the invention relates to a method for regenerating filters employed to remove particulate matter from coker gas oil to improve coker gas oil yield and yield of upgraded coker gas oil products.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 1, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Ramesh R. Hemrajani, Glen E. Phillips, Simon R. Kelemen, Kuangnan Qian
  • Publication number: 20030106838
    Abstract: The invention relates to a method for improving yield in petroleum streams derived from coking processes. In a preferred embodiment, the invention relates to a method for regenerating filters employed to remove particulate matter from coker gas oil to improve coker gas oil yield and yield of upgraded coker gas oil products.
    Type: Application
    Filed: November 12, 2002
    Publication date: June 12, 2003
    Inventors: Michael Siskin, Ramesh R. Hemrajani, Glen E. Phillips, Simon R. Kelemen, Kuangnan Qian