Patents by Inventor Glen L. Miles

Glen L. Miles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8136084
    Abstract: A portion of an IC layout that includes a plurality of through silicon vias (TSVs) is evaluated to identify linearly aligned TSVs. The portion of the IC layout is modified to reduce a number of the linearly aligned TSVs, resulting in less wafer breakage.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: March 13, 2012
    Assignee: International Business Machines Corporation
    Inventors: Donald R. Dean, Jr., Peter J. Lindgren, Glen L. Miles, Edmund J. Sprogis, Anthony K. Stamper
  • Publication number: 20110057319
    Abstract: A portion of an IC layout that includes a plurality of through silicon vias (TSVs) is evaluated to identify linearly aligned TSVs. The portion of the IC layout is modified to reduce a number of the linearly aligned TSVs, resulting in less wafer breakage.
    Type: Application
    Filed: September 9, 2009
    Publication date: March 10, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald R. Dean, JR., Peter J. Lindgren, Glen L. Miles, Edmund J. Sprogis, Anthony K. Stamper
  • Patent number: 7714366
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting CMOS transistor may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size may be directed to maximize dopant activation in the polysilicon near the gate dielectric and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. A region of polycrystalline silicon may have a varying grain size as a function of a distance measured from a surface of the dielectric film.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 6893948
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: May 17, 2005
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 6853032
    Abstract: A process of forming a nitride film on a semiconductor substrate including exposing a surface of the substrate to a rapid thermal process to form the nitride film.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: February 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Donna K. Johnson, Glen L. Miles
  • Publication number: 20040135214
    Abstract: A process of forming a nitride film on a semiconductor substrate including exposing a surface of the substrate to a rapid thermal process to form the nitride film.
    Type: Application
    Filed: December 8, 2003
    Publication date: July 15, 2004
    Applicant: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Donna K. Johnson, Glen L. Miles
  • Publication number: 20040023476
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Application
    Filed: July 11, 2003
    Publication date: February 5, 2004
    Applicant: International Business Machines
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 6670263
    Abstract: Polysilicon electrical depletion in a polysilicon gate electrode is reduced by depositing the polysilicon under controlled conditions so as to vary the crystal grain size through the thickness of the polysilicon. The resulting structure may have two or more depth-wise contiguous regions of respective crystalline grain size, and the selection of grain size is directed to maximize dopant activation in the polysilicon near the gate dielectric, and to tailor the resistance of the polysilicon above that first region and more distant from the gate dielectric. This method, and the resulting structure, are advantageously employed in forming FETs, and doped polysilicon resistors.
    Type: Grant
    Filed: March 10, 2001
    Date of Patent: December 30, 2003
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Kevin K. Chan, Jeffrey D. Gilbert, Kevin M. Houlihan, Glen L. Miles, James J. Quinlivan, Samuel C. Ramac, Michael B. Rice, Beth A. Ward
  • Patent number: 6660664
    Abstract: A process of forming a nitride film on a semiconductor substrate including exposing a surface of the substrate to a rapid thermal process to form the nitride film.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: December 9, 2003
    Assignee: International Business Machines Corp.
    Inventors: James W. Adkisson, Arne W. Ballantine, Matthew D. Gallagher, Peter J. Geiss, Jeffrey D. Gilbert, Shwu-Jen Jeng, Donna K. Johnson, Robb A. Johnson, Glen L. Miles, Kirk D. Peterson, James J. Toomey, Tina Wagner
  • Patent number: 6509265
    Abstract: A process for forming a conductive contact having a flat interface. A layer containing niobium and titanium is deposited on a silicon substrate and the resulting structure is annealed in a nitrogen-containing atmosphere at about 500° C. to about 700° C. By this process, a flatter interface between silicide and silicon, which is less likely to cause junction leakage, is formed on annealing. The step of annealing also produces a more uniform bilayer, which is a better barrier against tungsten encroachment during subsequent tungsten deposition. Larger silicide grains are also formed so that fewer grain boundaries are produced, reducing metal diffusion in grain boundaries. The process can be used to form contacts for very small devices and shallow junctions, such as are required for current and future semiconductor devices.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: January 21, 2003
    Assignee: International Business Machines Corporation
    Inventors: Patrick W. DeHaven, Anthony G. Domenicucci, Lynne M. Gignac, Glen L. Miles, Prabhat Tiwari, Yun-Yu Wang, Horatio S. Wildman, Kwong Hon Wong
  • Patent number: 6348419
    Abstract: A method for adjusting an etch rate of a nitride layer, in accordance with the present invention includes, in a reaction chamber, providing a surface for depositing a nitride layer. The nitride layer is deposited on the surface by adjusting processing parameters to control an etch rate achievable for the nitride layer. The etch rate achievable results from the depositing step such that an ability to etch the nitride layer is determined by the adjustment of the process parameters. A refractive index measurement may be provided for monitoring the achievable etch rate for the nitride layer.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: February 19, 2002
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Frank Grellner, Paul C. Jamison, Glen L. Miles, David C. Mosher, Emmanuel Batt
  • Publication number: 20010009291
    Abstract: A semiconductor structure comprising a plurality of gates located on a semiconductor substrate; wherein insulating spacer is provided on sidewalls of the gates; and metallic silicide located between the gates is provided along with a method for its fabrication. A partially disposable spacer permits increased area for silicide formation without degrading the device short channel behavior.
    Type: Application
    Filed: March 27, 2001
    Publication date: July 26, 2001
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Glen L. Miles
  • Patent number: 6250803
    Abstract: A method of measuring temperature of momentary anneals in the temperature range of around 900° C. is disclosed. The method comprises the steps of providing a substrate of doped polysilicon or single crystal silicon, applying a blocking layer on a portion of the substrate, selectively forming silicide on the substrate adjacent opposite ends of the blocking layer to define a resistor, subjecting the resistor to a momentary anneal in the temperature range around 900° C., and measuring interfacial resistance between the silicide and the substrate after the annealing step, the resistance correlating to anneal temperature.
    Type: Grant
    Filed: June 8, 1999
    Date of Patent: June 26, 2001
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Glen L. Miles
  • Patent number: 6235597
    Abstract: A semiconductor structure comprising a plurality of gates located on a semiconductor substrate; wherein insulating spacer is provided on sidewalls of the gates; and metallic silicide located between the gates is provided along with a method for its fabrication. A partially disposable spacer permits increased area for silicide formation without degrading the device short channel behavior.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: May 22, 2001
    Assignee: International Business Machines Corporation
    Inventor: Glen L. Miles
  • Patent number: 6180521
    Abstract: A process for forming a conductive contact having a flat interface. A layer containing niobium and titanium is deposited on a silicon substrate and the resulting structure is annealed in a nitrogen-containing atmosphere at about 500° C. to about 700° C. By this process, a flatter interface between silicide and silicon, which is less likely to cause junction leakage, is formed on annealing. The step of annealing also produces a more uniform bilayer, which is a better barrier against tungsten encroachment during subsequent tungsten deposition. Larger silicide grains are also formed so that fewer grain boundaries are produced, reducing metal diffusion in grain boundaries. The process can be used to form contacts for very small devices and shallow junctions, such as are required for current and future semiconductor devices.
    Type: Grant
    Filed: January 6, 1999
    Date of Patent: January 30, 2001
    Assignee: International Business Machines Corporation
    Inventors: Patrick W. DeHaven, Anthony G. Domenicucci, Lynne M. Gignac, Glen L. Miles, Prabhat Tiwari, Yun-Yu Wang, Horatio S. Wildman, Kwong Hon Wong
  • Patent number: 6180456
    Abstract: A logic chip including a non-volatile random access memory (NVRAM) array and method of fabrication thereof. The chip includes devices with gates on one or more of three polysilicon layers. Chip logic uses normal FETs and array support includes high voltage FETs. Both logic and support are CMOS. The gates of normal FETs in the chip logic are from the third, uppermost polysilicon layer. The third poly silicon layer also is used as a mask for high voltage FETs and array word lines, both of which use the second polysilicon layer for gates. The first polysilicon layer is used solely for cell floating gates.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: January 30, 2001
    Assignee: International Business Machines Corporation
    Inventors: Chung Hon Lam, Glen L. Miles, Jame Spiros Nakos, Christa R. Willets
  • Patent number: 6069040
    Abstract: Floating gates with field enhancement features are produced by a technique that makes possible structures smaller than the lithographically defined image. The floating gates produced having sharp tips for source-side injection flash memory cells. Moreover, the process provides an insulator cap over the floating gate that is self-aligned.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: May 30, 2000
    Assignee: International Business Machines Corporation
    Inventors: Glen L. Miles, Robert K. Leidy
  • Patent number: 6060358
    Abstract: Recessing the floating gate of a NVRAM cell within a substrate or semiconductor layer between isolation structures permits manufacture by a simplified self-aligned process of high yield and economy while supporting maximum integration density and reducing or eliminating severe topography of the control gate connections which are formed in strips having a generally planar lower surface and which are of improved robustness and potentially fine pitch. Impurity implants are facilitated by thicknesses of various material present during portions of the process and in various combinations which may be advantageously exploited to obtain tailoring of impurity concentrations and profiles of both NVRAM cells and damascene field effect transistors formed by similar and compatible processes.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: May 9, 2000
    Assignee: International Business Machines Corporation
    Inventors: John A. Bracchitta, Jeffrey B. Johnson, Glen L. Miles
  • Patent number: 5510295
    Abstract: The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered. First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 10.sup.17 atoms/cm.sup.3. The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700.degree. C., and more preferably between about 600.degree.-700.degree. C.
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: April 23, 1996
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Lawrence A. Clevenger, Francois M. d'Heurle, James M. E. Harper, Randy W. Mann, Glen L. Miles, Donald W. D. Rakowski
  • Patent number: 4983544
    Abstract: A method of forming a bridge contact between a source diffusion region of a transfer gate FET and a polysilicon-filled trench storage capacitor electrodes of the FET. A layer of titanium is evaporated at a temperature of approximately 370.degree. C., so that the titanium has a substantially columnar grain structure and a minimum of matrix material. The bottom portions of the columnar grains have a lateral length that approximates the lateral length of the dielectric separating the source diffusion from the poly-filled trench. Thus, upon sintering at 700.degree. C. in an N.sub.2 atmosphere, titanium silicide will form over all exposed silicon regions as well as the dielectric, without shorting the FET electrodes together.
    Type: Grant
    Filed: October 20, 1986
    Date of Patent: January 8, 1991
    Assignee: International Business Machines Corporation
    Inventors: Nicky C. Lu, Brian J. Machesney, Rick L. Mohler, Glen L. Miles, Chung-Yu Ting, Stephen D. Warley