Patents by Inventor Glen Nakafuji

Glen Nakafuji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922252
    Abstract: The present invention is generally directed to systems, materials, and methods for ore tracking. In particular, the invention relates to metamaterial RFID tags that are chip-free and comprise RF metamaterials to produce unique spectral features when illuminated with microwave radiation. In one or more embodiments of the present invention, each of the metamaterial RFID tags includes one or more tag units that have a particular spectral response representing a one-bit code. As a result, each tag may comprise a specific code that is “assembled” from a plurality of tag units in a modular fashion. One or more embodiments of the present invention further includes a blast-tolerant package for one or more of the metamaterial RFID tags that enables such tags to survive blasting, crushing, and/or other forces inherent in mine operations.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: March 5, 2024
    Assignee: Oceanit Laboratories, Inc.
    Inventors: Michael Hadmack, Ryan Miyamoto, Glen Nakafuji, Vinod Veedu, Donald Harbin, Manabu Kimura
  • Patent number: 11774043
    Abstract: Methods, products, and systems for monitoring and improving pipeline infrastructure are disclosed. At least one embodiment of the invention comprises a smart-sensing coating, which is applied to one or more interior surfaces of a pipe or pipeline. The coating may comprise a dual-purpose metamaterial, which itself may comprise a plurality of acoustically active and tunable particles that may be embedded in a low-friction, corrosion-resistant, omniphobic polymer matrix. The particles may comprise a multi-layered assembly with a high-density material core, elastic matrix filler, and a stiff outer shell. The particles may further be specifically engineered to form an acoustic band gap at a chosen ultrasound frequency. At this chosen frequency, the particles are very nearly acoustically opaque, preventing the transmission of any and all sound. As such, the position and distribution of the particles inside the pipelines can be clearly distinguished.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: October 3, 2023
    Assignee: Oceanit Laboratories, Inc.
    Inventors: Jacob Pollock, Ganesh Arumugam, Matthew Nakatsuka, Vinod Veedu, Glen Nakafuji
  • Patent number: 11363233
    Abstract: Frequency imaging of different areas or object in an image is created by a visible light, infrared or other cameras taking multiple sequential images is disclosed. The images are recorded and stacked. Pixels that vary in the images yield time varying data on a pixel by pixel basis. The time varying data is processed to extract pixel by pixel signal spectrum or another similar signal metric. Frequency at each pixel is displayed and distinguished, such as by recoloring the pixels based on spectral power rather than intensity contrast.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: June 14, 2022
    Assignee: Oceanit Laboratories, Inc.
    Inventor: Glen Nakafuji
  • Patent number: 11140355
    Abstract: Frequency imaging of different areas or object in an image is created by a visible light, infrared or other cameras taking multiple sequential images. The images are recorded and stacked. Pixels that vary in the images yield time varying data on a pixel by pixel basis. The time varying data is processed to extract pixel by pixel signal spectrum or another similar signal metric. Frequency at each pixel is displayed and distinguished, such as by recoloring the pixels based on spectral power rather than intensity contrast.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: October 5, 2021
    Assignee: Oceanit Laboratories, Inc.
    Inventor: Glen Nakafuji
  • Patent number: 10934476
    Abstract: A waste material improvement and reuse method involves identifying an available material having a crush resistance that does not meet a requirement for use as proppant, but which can be improved to meet the requirement, and modifying a surface of the available material to improve the crush resistance to meet the requirement by applying a binding agent and/or an encapsulating agent to the available material, forming clumps of particles of the available material and increasing crush resistance.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: March 2, 2021
    Inventors: Venkat Kamavaram, Raphael Rodriguez, Ganesh Kumar Arumugam, Glen Nakafuji, Vinod Veedu
  • Patent number: 10254424
    Abstract: Acoustic particle metamaterials in Smart Proppants reflect sound waves at distinct frequency ranges when receiving sounds from an above ground or in-ground source. Sound receivers at separated locations receive the reflected sound waves at distinct times, providing information on location of the Smart Proppants, which are mixed with conventional proppants. The Smart Proppants prevent transmission of waves at precise ranges of frequencies and reflect those waves.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: April 9, 2019
    Assignee: Oceanit Laboratories, Inc.
    Inventors: Jacob Freas Pollock, Vinod P. Veedu, Christopher J. Sullivan, Glen Nakafuji
  • Patent number: 10190229
    Abstract: A new system has a plurality of modular segments flexibly attached to one other and a source of electrical power and plating and coating solutions at the rear of the plurality of modular segments. The plurality of modular segments include a drive stage configured to push the plurality of modular segments along a surface, a plating stage configured to apply the plating solution to the surface under a pre-set operating current density to deposit metal or metal alloy onto the surface, a surface treatment application stage configured to apply the coating solution to the surface, and a curing stage configured to cure the coating solution to form a final coating on the surface that is resistant to corrosion, chemical attacks and chemical buildup.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: January 29, 2019
    Assignee: OCEANIT LABORATORIES, INC.
    Inventors: Glen Nakafuji, Ganesh Kumar Arumugam, Vinod Veedu, Matthew Nakatsuka