Patents by Inventor Glen W. McLaughlin

Glen W. McLaughlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140378834
    Abstract: An ultrasound imaging method comprises: providing a probe that includes one or more transducer elements for transmitting and receiving ultrasound waves; generating a sequence of spatially distinct transmit beams which differ in one or more of origin and angle; determining a transmit beam spacing substantially based upon a combination of actual and desired transmit beam characteristics, thereby achieving a faster echo acquisition rate compared to a transmit beam spacing based upon round-trip transmit-receive beam sampling requirements; storing coherent receive echo data, from two or more transmit beams of the spatially distinct transmit beams; combining coherent receive echo data from at least two or more transmit beams to achieve a substantially spatially invariant synthesized transmit focus at each echo location; and combining coherent receive echo data from each transmit firing to achieve dynamic receive focusing at each echo location.
    Type: Application
    Filed: January 29, 2014
    Publication date: December 25, 2014
    Applicant: Zonare Medical Systems, Inc.
    Inventors: David J. Napolitano, Brian Derek DeBusschere, Glen W. McLaughlin, Larry Y. L. Mo, Ching-Hua Chou, Ting-Lan Ji, Robert W. Steins
  • Patent number: 8784318
    Abstract: Embodiments of the present invention provide an ultrasound scanner equipped with an image data processing unit that can perform adaptive parameter optimization during image formation and processing. In one embodiment, an ultrasound system comprises a channel data memory to store channel data obtained by digitizing ultrasound image data produced by an image scan; an image data processor configured to process the stored channel data in the memory to reconstruct an ultrasound image for each of a plurality of trial values of at least one parameter to be optimized; and a parameter optimization unit configured to evaluate an image quality of the reconstructed ultrasound image for each trial value of the at least one parameter, and to determine the optimized value of the at least one parameter based on the evaluated image quality.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: July 22, 2014
    Assignee: Zonare Medical Systems, Inc.
    Inventors: David J. Napolitano, Ching-Hua Chou, Ting-Lan Ji, Brian Derek DeBusschere, Glen W. McLaughlin, Larry Y. L. Mo, Robert W. Steins
  • Patent number: 8672846
    Abstract: In one embodiment, an ultrasound imaging method comprises: providing a probe that includes one or more transducer elements for transmitting and receiving ultrasound waves; generating a sequence of spatially distinct transmit beams which differ in one or more of origin and angle; determining a transmit beam spacing substantially based upon a combination of actual and desired transmit beam characteristics, thereby achieving a faster echo acquisition rate compared to a transmit beam spacing based upon round-trip transmit-receive beam sampling requirements; storing coherent receive echo data, from two or more transmit beams of the spatially distinct transmit beams; combining coherent receive echo data from at least two or more transmit beams to achieve a substantially spatially invariant synthesized transmit focus at each echo location; and combining coherent receive echo data from each transmit firing to achieve dynamic receive focusing at each echo location.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: March 18, 2014
    Assignee: Zonare Medical Systems, Inc.
    Inventors: David J. Napolitano, Brian Derek DeBusschere, Glen W. McLaughlin, Larry Y. L. Mo, Ching-Hua Chou, Ting-Lan Ji, Robert W. Steins
  • Patent number: 8357094
    Abstract: An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: January 22, 2013
    Assignee: Zonare Medical Systems Inc.
    Inventors: Larry Y. L. Mo, Glen W. McLaughlin, Brian Derek DeBusschere, Ting-Lan Ji, Ching-Hua Chou, David J. Napolitano, Kathy S. Jedrzejewicz, Thomas Jedrzejewicz, Kurt Sandstrom, Feng Yin, Scott Franklin Smith, Wenkang Qi, Robert Stanson
  • Publication number: 20120095338
    Abstract: An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems.
    Type: Application
    Filed: May 5, 2011
    Publication date: April 19, 2012
    Applicant: Zonare Medical Systems Inc.
    Inventors: Larry Y. L. Mo, Glen W. McLaughlin, Brian Derek DeBusschere, Ting-Lan Ji, Ching-Hua Chou, David J. Napolitano, Kathy S. Jedrzejewicz, Thomas Jedrzejewicz, Kurt Sandstrom, Feng Yin, Scott Franklin Smith, Wenkang Qi, Robert Stanson
  • Publication number: 20120083695
    Abstract: In one embodiment, an ultrasound imaging method comprises: providing a probe that includes one or more transducer elements for transmitting and receiving ultrasound waves; generating a sequence of spatially distinct transmit beams which differ in one or more of origin and angle; determining a transmit beam spacing substantially based upon a combination of actual and desired transmit beam characteristics, thereby achieving a faster echo acquisition rate compared to a transmit beam spacing based upon round-trip transmit-receive beam sampling requirements; storing coherent receive echo data, from two or more transmit beams of the spatially distinct transmit beams; combining coherent receive echo data from at least two or more transmit beams to achieve a substantially spatially invariant synthesized transmit focus at each echo location; and combining coherent receive echo data from each transmit firing to achieve dynamic receive focusing at each echo location.
    Type: Application
    Filed: August 2, 2011
    Publication date: April 5, 2012
    Applicant: Zonare Medical Systems, Inc.
    Inventors: David J. Napolitano, Brian Derek DeBusschere, Glen W. McLaughlin, Larry Y.L. Mo, Ching-Hua Chou, Ting-Lan Ji, Robert W. Steins
  • Patent number: 8002705
    Abstract: In one embodiment, an ultrasound imaging method comprises: providing a probe that includes one or more transducer elements for transmitting and receiving ultrasound waves; generating a sequence of spatially distinct transmit beams which differ in one or more of origin and angle; determining a transmit beam spacing substantially based upon a combination of actual and desired transmit beam characteristics, thereby achieving a faster echo acquisition rate compared to a transmit beam spacing based upon round-trip transmit-receive beam sampling requirements; storing coherent receive echo data, from two or more transmit beams of the spatially distinct transmit beams; combining coherent receive echo data from at least two or more transmit beams to achieve a substantially spatially invariant synthesized transmit focus at each echo location; and combining coherent receive echo data from each transmit firing to achieve dynamic receive focusing at each echo location.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 23, 2011
    Assignee: Zonaire Medical Systems, Inc.
    Inventors: David J. Napolitano, Brian Derek DeBusschere, Glen W. McLaughlin, Larry Y. L. Mo, Ching-Hua Chou, Ting-Lan Ji, Robert W. Steins
  • Publication number: 20100189329
    Abstract: An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems.
    Type: Application
    Filed: November 30, 2009
    Publication date: July 29, 2010
    Applicant: Zonare Medical Systems Inc.
    Inventors: Larry Y.L. Mo, Glen W. McLaughlin, Brian Derek DeBusschere, Ting-Lan Ji, Ching-Hua Chou, David J. Napolitano, Kathy S. Jedrzejewicz, Thomas Jedrzejewicz, Kurt Sandstrom, Feng Yin, Scott Franklin Smith, Wenkang Qi, Robert Stanson
  • Patent number: 7627386
    Abstract: An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: December 1, 2009
    Assignee: Zonaire Medical Systems, Inc.
    Inventors: Larry Y. L. Mo, Glen W. McLaughlin, Brian Derek DeBusschere, Ting-Lan Ji, Ching-Hua Chou, David J. Napolitano, Kathy S. Jedrzejewicz, Thomas Jedrzejewicz, Kurt Sandstrom, Feng Yin, Scott Franklin Smith, Wenkang Qi, Robert Stanson
  • Patent number: 7510529
    Abstract: An ultrasound reconstruction unit is provided. In one embodiment, a receive aperture control engine for the unit adaptively determines a set of reconstruction signals based on at least a series of selected echo signals and compares the size of a receive aperture with a predetermined number of reconstruction channels at each imaging point. The unit passes the selected echo signals from selected receive channels of one or more transducer elements to a reconstruction processor if the size of the receive aperture is not greater than the number of reconstruction channels. In another embodiment, the control engine compares the size of the receive aperture with a predetermined number of reconstruction channels at each imaging point and preprocess the selected echo signals to produce reconstructions signals that are equal in number to the number of reconstruction channels if the size of the receive aperture is greater than the number of reconstruction channels.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: March 31, 2009
    Assignee: ZONARE Medical Systems, Inc.
    Inventors: Ching-Hua Chou, Glen W. McLaughlin, Larry Y. L. Mo, Ting-Lan Ji
  • Publication number: 20080146922
    Abstract: Embodiments of the present invention provide ways for controlling a plurality of visual displays and a plurality of user interfaces for a portable ultrasound device which can be mounted to different docking stations or carts to provide and enhance different functionalities and features. In one embodiment, a portable ultrasound device comprises a portable housing; a display control module configured to control a plurality of visual displays, at least one of the visual displays being selectively configurable to provide a user interface display on the visual display for user interface control, at least one of the visual displays being selectively configurable to view an ultrasound image; and a plurality of user interfaces, at least one of the plurality of user interfaces being a separate user interface which is not integrally formed with the portable housing.
    Type: Application
    Filed: October 24, 2006
    Publication date: June 19, 2008
    Applicant: Zonare Medical Systems, Inc.
    Inventors: Robert W. Steins, Glen W. McLaughlin
  • Patent number: 7087020
    Abstract: Methods for processing ultrasound signals are provided. Processing of ultrasound signals comprises identifying qualified reconstruction channels in a receive aperture, grouping qualified reconstruction channels in the aperture, and preprocessing of selected echo signals using the grouped qualified reconstruction channels to produce reconstruction signals. Additional methodologies comprise comparing a number of channels in a receive aperture with a number of reconstruction channels to determine a number of reconstruction signals and grouping qualified channels in the receive aperture such that the number of reconstruction data signals is not less than the number of reconstruction channels. An ultrasound reconstruction unit comprising a receive aperture control engine configured to use selected echo signals to adaptively determine a set of reconstruction signals is also provided.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: August 8, 2006
    Assignee: Zonare Medical Systems, Inc.
    Inventors: Ching-Hua Chou, Glen W. McLaughlin, Larry Y. L. Mo, Ting-Lan Ji
  • Patent number: 7022075
    Abstract: A Graphical User Interface (GUI) for an ultrasound system. The ultrasound system has operational modes and the GUI has corresponding icons, tabs, and menu items image and information fields. The User Interface (UI) provides several types of graphical elements with intelligent behavior, such as being context sensitive and adaptive, called active objects, for example, tabs, menus, icons, windows of user interaction and data display and an alphanumeric keyboard. In addition the UI may also be voice activated. The UI further provides for a touchscreen for direct selection of displayed active objects. In an embodiment, the UI is for a medical ultrasound handheld imaging instrument. The UI provides a limited set of hard and soft keys with adaptive functionality that can be used with only one hand and potentially with only one thumb.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: April 4, 2006
    Assignee: Zonare Medical Systems, Inc.
    Inventors: Sorin Grunwald, Robert Stanson, Soo Hom, Ailya Batool, Glen W. McLaughlin
  • Patent number: 6997876
    Abstract: A system and method for ultrasound clutter filtering is provided. A processor is configured to iteratively select an optimal high pass filter for the progressive, ordered filtering of clutter from ultrasound color flow imaging data. The high pass filter input for each iterative selection and ordered set of high pass filters is the same original ultrasound color flow imaging data. The high pass filters have different cutoff frequencies whereby each high pass filter can be implemented using different structures. The system and method allow for filtering of clutter from ultrasound color flow imaging data until the clutter is substantially removed.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: February 14, 2006
    Assignee: Zonare Medical Systems, Inc.
    Inventors: Larry Y. L. Mo, Ching-Hua Chou, Ting-Lan Ji, Glen W. McLaughlin
  • Publication number: 20040199078
    Abstract: A system and method for adaptive clutter filtering in ultrasound color flow imaging is provided including an iterative algorithm that is used to select the best clutter filter for each packet of color flow data. If significant clutter motion is present, a high pass filter cutoff frequency is automatically set to suppress the clutter and associated flash artifacts. The cutoff frequency is chosen according to the frequency of the clutter - the lower the clutter frequency, the lower the cutoff frequency can be. If clutter frequencies are low, lower filter cutoffs allow for maximum low flow detection. In this manner, the filter cutoff frequency can be optimized based on the data for each pixel in the color flow image.
    Type: Application
    Filed: April 16, 2004
    Publication date: October 7, 2004
    Inventors: Larry Y. L. Mo, Ching-Hua Chou, Ting-Lan Ji, Glen W. McLaughlin
  • Publication number: 20040138569
    Abstract: A Graphical User Interface (GUI) for an ultrasound system. The ultrasound system has operational modes and the GUI has corresponding icons, tabs, and menu items image and information fields. The User Interface (UI) provides several types of graphical elements with intelligent behavior, such as being context sensitive and adaptive, called active objects, for example, tabs, menus, icons, windows of user interaction and data display and an alphanumeric keyboard. In addition the UI may also be voice activated. The UI further provides for a touchscreen for direct selection of displayed active objects. In an embodiment, the UI is for a medical ultrasound handheld imaging instrument. The UI provides a limited set of hard and soft keys with adaptive functionality that can be used with only one hand and potentially with only one thumb.
    Type: Application
    Filed: October 29, 2003
    Publication date: July 15, 2004
    Inventors: Sorin Grunwald, Robert Stanson, Soo Hom, Ailya Batool, Glen W. McLaughlin
  • Patent number: 6733455
    Abstract: An adaptive clutter filtering for ultrasound color flow imaging is provided including an iterative algorithm that is used to select the best clutter filter for each packet of color flow data. If significant clutter motion is present, a high pass filter cutoff frequency is automatically set to suppress the clutter and associated flash artifacts. The cutoff frequency is chosen according to the frequency of the clutter—the lower the clutter frequency, the lower the cutoff frequency can be. If clutter frequencies are low, lower filter cutoffs allow for maximum low flow detection. In this manner, the filter cutoff frequency can be optimized based on the data for each pixel in the color flow image.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: May 11, 2004
    Assignee: Zonare Medical Systems, Inc.
    Inventors: Larry Y. L. Mo, Ching-Hua Chou, Ting-Lan Ji, Glen W. McLaughlin
  • Publication number: 20030220573
    Abstract: Ultrasound apparatus for examining tissue in a region of interest in a body comprising a housing having a viewing aperture. An ultrasonic transducer is provided comprised of an array of ultrasonic elements disposed in the viewing aperture. Electrical pulses are supplied to the transducer for transducer excitation to introduce ultrasonic signals into the body for reflection from the tissue in the region of interest. The transducer is capable of converting ultrasonic signals reflected from the tissue within the body to the transducer to provide electrical signals. The electrical signals are gain corrected in accordance with time. In-phase and out-of-phase components of the electrical signals are provided and then digitized. The digitized electrical signals are collected to form one image for a single frame of the tissue in the region of interest in the body from transducer excitations less than thirty-three in number which is then displayed.
    Type: Application
    Filed: May 23, 2003
    Publication date: November 27, 2003
    Inventors: Mir A. Imran, Glen W. McLaughlin, William D. Lipps, James M. Brennan
  • Patent number: 6569102
    Abstract: Ultrasound apparatus for examining tissue in a region of interest in a body comprising a housing having a viewing aperture. An ultrasonic transducer is provided comprised of an array of ultrasonic elements disposed in the viewing aperture. Electrical pulses are supplied to the transducer for transducer excitation to introduce ultrasonic signals into the body for reflection from the tissue in the region of interest. The transducer is capable of converting ultrasonic signals reflected from the tissue within the body to the transducer to provide electrical signals. The electrical signals are gain corrected in accordance with time. In-phase and out-of-phase components of the electrical signals are provided and then digitized. The digitized electrical signals are collected to form one image for a single frame of the tissue in the region of interest in the body from transducer excitations less than thirty-three in number which is then displayed.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: May 27, 2003
    Assignee: Zonare Medical Systems, Inc.
    Inventors: Mir A. Imran, Glen W. McLaughlin, William D. Lipps, James M. Brennan
  • Publication number: 20030013959
    Abstract: A Graphical User Interface (GUI) for an ultrasound system. The ultrasound system has operational modes, and the GUI has corresponding icons, tabs, and menu items Image and information fields. The User Interface (UI) provides several types of graphical elements with intelligent behavior, such as being context sensitive and adaptive, called active objects, for example, tabs, menus, icons, windows of user interaction and data display, and an alphanumeric keyboard. In addition the UI may also be voice activated. The UI further provides for a touchscreen for direct selection of displayed active objects. In an embodiment, the UI is for a medical ultrasound handheld imaging instrument. The UI provides a limited set of hard and soft keys with adaptive functionality that can be used with only one hand and potentially with only one thumb.
    Type: Application
    Filed: February 20, 2002
    Publication date: January 16, 2003
    Inventors: Sorin Grunwald, Robert Stanson, Soo Hom, Ailya Batool, Glen W. McLaughlin