Patents by Inventor Glenn E. Hoffman

Glenn E. Hoffman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9404165
    Abstract: A process for recovering pig iron from iron-containing concentrates produced from iron-containing ores and sands by forming agglomerates and reducing them in a natural gas smelter, in which the process makes maximum utilization of heat created in and by the process.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: August 2, 2016
    Assignee: HOFFMAN & SONS TECHNOLOGIES, LLC
    Inventor: Glenn E. Hoffman
  • Publication number: 20150275323
    Abstract: A method for producing pig iron by direct processing of iron-containing materials such as iron-containing sands, in which the iron-containing materials and carbonaceous reductant are mixed with a fluxing agent to form a mixture; briquettes or agglomerates are formed from the mixture; at least a portion of the agglomerates are preheated to a temperature of 750 to 1200° C. and are pre-reduced, then the preheated, pre-reduced agglomerates are introduced into the melting furnace; the agglomerates are melted at a temperature of from 1300 to 1760° C. and form hot metal with a slag thereon; the slag is removed and the hot metal is tapped as pig iron, and the off-gas from the smelter is used to operate a preheater for the agglomerates.
    Type: Application
    Filed: August 22, 2013
    Publication date: October 1, 2015
    Inventor: Glenn E. Hoffman
  • Publication number: 20140331821
    Abstract: A process for recovering pig iron from iron-containing concentrates produced from iron-containing ores and sands by forming agglomerates and reducing them in a natural gas smelter, in which the process makes maximum utilization of heat created in and by the process.
    Type: Application
    Filed: August 22, 2013
    Publication date: November 13, 2014
    Applicant: HOFFMAN & SONS TECHNOLOGIES, LLC
    Inventor: Glenn E. HOFFMAN
  • Patent number: 8545593
    Abstract: A method for producing liquid ferroalloy by direct processing of manganese and chromium bearing iron compounds, by the steps: of mixing carbonaceous reductant, fluxing agent, and a binder with materials such as iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands, to form a mixture; forming agglomerates from the mixture; feeding the agglomerates to a melting furnace with other materials; melting the feed materials at a temperature of from 1500 to 1760° C. and forming a slag and hot metal; removing the slag; tapping the hot metal as liquid ferroalloy, and utilizing the off-gases from the melting furnace as combustion fuel to drive a turbine and to generate electricity.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: October 1, 2013
    Assignee: Cardero Resource Corporation
    Inventor: Glenn E. Hoffman
  • Patent number: 8420007
    Abstract: Apparatus for producing lead and zinc from concentrates of zinc and lead sulfides or oxides, including: a source of zinc ore and/or lead ore concentrates, iron bearing and carbon containing materials; metallic iron fines and iron oxide fines; carbonaceous reductant; fluxing agent; and a binder; a mixer for forming a mixture from said concentrates and other materials; an agglomerator communicating with the mixer for forming agglomerates from the mixture; a melting furnace for melting the mixture and vaporizing lead and zinc; a pressure sealed feed system communicating with the agglomerator and the melting furnace for introducing agglomerates to the melting furnace; a pressure sealed chamber surrounding the melting furnace; a water-cooled condenser for receiving the vaporized metal and cooling and condensing the metal vapors to liquid metal; a tapping device communicating with the condenser for removing the liquid metal; and associated devices for separating the zinc and lead and recovering the lead and zinc me
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 16, 2013
    Assignee: Cardero Resource Corporation
    Inventor: Glenn E. Hoffman
  • Publication number: 20120036960
    Abstract: A method for producing liquid ferroalloy by direct processing of manganese and chromium bearing iron compounds, by the steps: of mixing carbonaceous reductant, fluxing agent, and a binder with materials such as iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands, to form a mixture; forming agglomerates from the mixture; feeding the agglomerates to a melting furnace with other materials; melting the feed materials at a temperature of from 1500 to 1760° C. and forming a slag and hot metal; removing the slag; tapping the hot metal as liquid ferroalloy, and utilizing the off-gases from the melting furnace as combustion fuel to drive a turbine and to generate electricity.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 16, 2012
    Inventor: Glenn E. Hoffman
  • Publication number: 20120013053
    Abstract: Apparatus for producing lead and zinc from concentrates of zinc and lead sulfides or oxides, including: a source of zinc ore and/or lead ore concentrates, iron bearing and carbon containing materials; metallic iron fines and iron oxide fines; carbonaceous reductant; fluxing agent; and a binder; a mixer for forming a mixture from said concentrates and other materials; an agglomerator communicating with the mixer for forming agglomerates from the mixture; a melting furnace for melting the mixture and vaporizing lead and zinc; a pressure sealed feed system communicating with the agglomerator and the melting furnace for introducing agglomerates to the melting furnace; a pressure sealed chamber surrounding the melting furnace; a water-cooled condenser for receiving the vaporized metal and cooling and condensing the metal vapors to liquid metal; a tapping device communicating with the condenser for removing the liquid metal; and associated devices for separating the zinc and lead and recovering the lead and zinc me
    Type: Application
    Filed: September 20, 2011
    Publication date: January 19, 2012
    Inventor: Glenn E. Hoffman
  • Patent number: 8043408
    Abstract: A process and apparatus for producing lead and zinc from concentrates of zinc and lead sulfides or oxides includes the steps of: (a) mixing lead ore and/or zinc ore concentrates, iron bearing and carbon containing materials, metallic iron fines and iron oxide fines, carbonaceous reductant, fluxing agent, and a binder to form a mixture; (b) forming agglomerates from the mixture (c) introducing the agglomerates to a melting furnace; (d) maintaining a reducing atmosphere within the melting furnace; (e) vaporizing lead and zinc in the melting furnace at a temperature of 1000 to 1650 C, and removing the lead and zinc from the melting furnace in vaporized form; (f) cooling and condensing the metal vapors to liquid metal; and (g) separating the zinc and lead; and (h) recovering the lead and zinc metal separately.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: October 25, 2011
    Assignee: Cardero Resource Corporation
    Inventor: Glenn E. Hoffman
  • Patent number: 7985389
    Abstract: A method for producing pig iron by direct processing of ferrotitania sands, by the steps of: (a) mixing carbonaceous reductant, a fluxing agent, and a binder with titanium-containing materials selected from iron sands, metallic oxides, and/or iron ore concentrates, to form a mixture; (b) forming agglomerates from the mixture (c) introducing the agglomerates to a melting furnace; (d) melting the agglomerates at a temperature of from 1500 to 1760 C and forming hot metal with a slag thereon; (e) removing the slag; (f) tapping the hot metal; and (g) recovering the titanium and vanadium values.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: July 26, 2011
    Assignee: Cardero Resource Corporation
    Inventor: Glenn E. Hoffman
  • Publication number: 20100126312
    Abstract: A process and apparatus for producing lead and zinc from concentrates of zinc and lead sulfides or oxides includes the steps of: (a) mixing lead ore and/or zinc ore concentrates, iron bearing and carbon containing materials, metallic iron fines and iron oxide fines, carbonaceous reductant, fluxing agent, and a binder to form a mixture; (b) forming agglomerates from the mixture (c) introducing the agglomerates to a melting furnace; (d) maintaining a reducing atmosphere within the melting furnace; (e) vaporizing lead and zinc in the melting furnace at a temperature of 1000 to 1650 C, and removing the lead and zinc from the melting furnace in vaporized form; (f) cooling and condensing the metal vapors to liquid metal; and (g) separating the zinc and lead; and (h) recovering the lead and zinc metal separately.
    Type: Application
    Filed: August 12, 2008
    Publication date: May 27, 2010
    Inventor: Glenn E. Hoffman
  • Publication number: 20100126311
    Abstract: A method for producing liquid ferroalloy by direct processing of manganese and chromium bearing iron compounds, by the steps: of mixing carbonaceous reductant, fluxing agent, and a binder with materials such as iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands, to form a mixture; forming agglomerates from the mixture; feeding the agglomerates to a melting furnace with other materials; melting the feed materials at a temperature of from 1500 to 1760 C and forming a slag and hot metal; removing the slag; and tapping the hot metal as liquid ferroalloy.
    Type: Application
    Filed: August 12, 2008
    Publication date: May 27, 2010
    Inventor: Glenn E. Hoffman
  • Publication number: 20100126310
    Abstract: A method for producing pig iron by direct processing of ferrotitania sands, by the steps of: (a) mixing carbonaceous reductant, a fluxing agent, and a binder with titanium-containing materials selected from iron sands, metallic oxides, and/or iron ore concentrates, to form a mixture; (b) forming agglomerates from the mixture (c) introducing the agglomerates to a melting furnace; (d) melting the agglomerates at a temperature of from 1500 to 1760 C and forming hot metal with a slag thereon; (e) removing the slag; (f) tapping the hot metal; and (g) recovering the titanium and vanadium values.
    Type: Application
    Filed: August 12, 2008
    Publication date: May 27, 2010
    Inventor: Glenn E. Hoffman
  • Patent number: 6802886
    Abstract: The invention is a method of making metallized iron agglomerates by combining iron/steel particles and a reductant material with a cellulose fiber binder material, compacting the combination to form a solid agglomerate, and reducing the iron portions of the agglomerate in a direct reduction furnace. The cellulose fiber binder material provides an agglomerate having improved strength and lower overall cost than comparable agglomerates using binders known in the art.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: October 12, 2004
    Assignee: Midrex Technologies, Inc.
    Inventors: Glenn E. Hoffman, James M. McClelland, Jr.
  • Patent number: 6749664
    Abstract: An apparatus and method for the direct reduction of iron oxide utilizes a hearth furnace having a vitreous hearth layer of conditioning materials, with the vitreous hearth layer introduced onto a refractory surface of the furnace. The vitreous hearth layer may have upper layers of coating compounds including carbonaceous materials, onto which iron oxide feed material is placed with the carbonaceous materials assisting with segregating the reduced molten iron nuggets from the vitreous hearth layer. The conditioning materials may include compounds such as silicon oxide, magnesium oxide, iron oxides, and aluminum oxide. The conditioning materials are placed in solid or liquid form on the refractory surface, which allows the conditioning materials to raise the melting temperature of the vitreous hearth layer onto which the coating compounds and iron oxide materials are placed.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: June 15, 2004
    Assignee: Midrex International, B.V., Rotterdam, Zurich Branch
    Inventors: Glenn E. Hoffman, David C. Meissner, Kyle J. Shoop
  • Patent number: 6685761
    Abstract: The invention is a method and apparatus for producing beneficiated titanium oxides using a modified rotary hearth furnace, that is a finisher-hearth-melter (FHM) furnace. In the method the refractory surface of the hearth is coated with carbonaceous hearth conditioners and refractory compounds, where onto said hearth is charged with pre-reduced agglomerates. The pre-reduced agglomerates is leveled, then heated until molten, and then reacted with the carbon and reducing gas burner gases until any residual iron oxide is converted to iron having a low sulfur content. Fluid slag and molted iron forms melted agglomerates. The fluid slag is rich in titanium. The melted agglomerates are cooled, and then the melted agglomerates and the hearth conditioners, including the refractory compounds, are discharged onto a screen, which separate the melted agglomerates from the hearth conditioner.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: February 3, 2004
    Assignee: Midrex International B.V. Rotterdam, Zurich Branch
    Inventors: Glenn E. Hoffman, Ronald D. Gray
  • Patent number: 6648942
    Abstract: The invention is a method and apparatus for iron-making/steel-making using a modified rotary hearth furnace, that is a finisher-hearth-melter (FHM) furnace. In the method the refractory surface of the hearth is coated with carbonaceous hearth conditioners and refractory compounds, where onto said hearth is charged with pre-reduced metallized iron. The pre-reduced metallized iron is leveled, then heated until molten, and then reacted with the carbon and reducing gas burner gases until any residual iron oxide is converted to iron having a low sulfur content. Nascent slag separates from the molted iron forming carburized iron nuggets. The nuggets are cooled, and then the iron nuggets and the hearth conditioners, including the refractory compounds, are discharged onto a screen, which separate the iron nuggets from the hearth conditioner.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: November 18, 2003
    Assignee: Midrex International B.V. Rotterdam, Zurich Branch
    Inventors: Glenn E. Hoffman, Robert M. Klawonn
  • Patent number: 6582491
    Abstract: This invention relates to a method for operation of a moving hearth furnace in conjunction with an electric melter for production of high purity iron product having a range of silicon and manganese, with low sulfur and phosphorus content. The method includes producing high purity iron product and a range of carbon content product from iron oxide and carbon bearing agglomerates, including the steps of providing a furnace for direct reduction of iron oxide and carbon bearing agglomerates, pre-reducing iron and carbon bearing agglomerates in a furnace having a moving hearth surface, producing intermediate carbon-containing metallized iron. An electric melter furnace is utilized for receiving intermediate carbon-containing metallized iron from the pre-reducing step, which is fed directly and continuously into a central interior area of the electric melter, with heating of the carbon-containing metallized iron in the electric melter under elevated temperatures of about 1300° C. to about 1700° C.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: June 24, 2003
    Assignee: Midrex International, B.V. Rotterdam, Zurich Branch
    Inventors: Glenn E. Hoffman, Ronald D. Gray
  • Publication number: 20030097908
    Abstract: The invention is a method and apparatus for iron-making/steel-making using a modified rotary hearth furnace, that is a finisher-hearth-melter (FHM) furnace. In the method the refractory surface of the hearth is coated with carbonaceous hearth conditioners and refractory compounds, where onto said hearth is charged with pre-reduced metallized iron. The pre-reduced metallized iron is leveled, then heated until molten, and then reacted with the carbon and reducing gas burner gases until any residual iron oxide is converted to iron having a low sulfur content. Nascent slag separates from the molted iron forming carburized iron nuggets. The nuggets are cooled, and then the iron nuggets and the hearth conditioners, including the refractory compounds, are discharged onto a screen, which separate the iron nuggets from the hearth conditioner.
    Type: Application
    Filed: January 25, 2002
    Publication date: May 29, 2003
    Inventors: Glenn E. Hoffman, Robert M. Klawonn
  • Patent number: 6413295
    Abstract: The present invention is an apparatus and method for the direct reduction of iron oxide utilizing a rotary hearth furnace to form a high purity carbon-containing iron metal button. The hearth layer may be a refractory or a vitreous hearth layer of iron oxide, carbon, and silica compounds. Additionally, coating materials may be introduced onto the refractory or vitreous hearth layer before iron oxide ore and carbon materials are added, with the coating materials preventing attack of the molten iron on the hearth layer. The coating materials may include compounds of carbon, iron oxide, silicon oxide, magnesium oxide, and/or aluminum oxide. The coating materials may be placed as a solid or a slurry on the hearth layer and heated, which provides a protective layer onto which the iron oxide ores and carbon materials are placed. The iron oxide is reduced and forms molten globules of high purity iron and residual carbon, which remain separate from the hearth layer.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: July 2, 2002
    Assignee: Midrex International B.V. Rotterdam, Zurich Branch
    Inventors: David C. Meissner, Glenn E. Hoffman, Kyle J. Shoop, Takuya Negami, Akira Uragami, Yasuhiro Tanigaki, Shuzo Ito, Isao Kobayashi, Osamu Tsuge, Koji Tokuda, Shoichi Kikuchi
  • Patent number: D638476
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: May 24, 2011
    Inventors: Glenn E. Hoffman, Sean G. Hoffman