Patents by Inventor Glenn G. Jernigan

Glenn G. Jernigan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210296524
    Abstract: A method of growing fully relaxed SiGeSn buffer layers on Si substrates to produce virtual substrates for the epitaxial growth of high quality GeSn films suitable for high performance infrared (IR) optoelectronic device technology directly integrated on silicon. Growing the SiGeSn virtual substrate uses a precisely decreasing growth temperature and Si flux and a precisely increasing Ge and Sn flux. The virtual substrates may have a slightly larger lattice constant than that of the target GeSn alloy to impose a precise degree of tensile strain resulting in a direct band gap for the target GeSn alloy.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 23, 2021
    Inventors: Glenn G. Jernigan, Mark E. Twigg, Nadeemullah A. Mahadik, Jill A. Nolde
  • Patent number: 10686041
    Abstract: A 3C—SiC buffer layer on Si(001) comprising a porous buffer layer of 3C—SiC on a Si(001) substrate, wherein the porous buffer layer is produced through a solid state reaction, and wherein an amorphous carbon layer on the Si(001) substrate is deposited by magnetron sputtering of a C target at room temperature at a rate of 0.8 nm/min.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: June 16, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Connie H. Li, Glenn G. Jernigan, Berend T. Jonker, Ramasis Goswami, Carl S. Hellberg
  • Patent number: 9741921
    Abstract: A hydrogen-free amorphous dielectric insulating film having a high material density and a low density of tunneling states. The film is prepared by deposition of a dielectric material on a substrate having a high substrate temperature Tsub under high vacuum and at a controlled low deposition rate. In one embodiment, the film is amorphous silicon while in another embodiment the film is amorphous germanium.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: August 22, 2017
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Xiao Liu, Daniel R. Queen, Frances Hellman, Thomas H. Metcalf, Matthew R. Abernathy, Glenn G. Jernigan
  • Publication number: 20170213891
    Abstract: A 3C—SiC buffer layer on Si(001) comprising a porous buffer layer of 3C—SiC on a Si(001) substrate, wherein the porous buffer layer is produced through a solid state reaction, and wherein an amorphous carbon layer on the Si(001) substrate is deposited by magnetron sputtering of a C target at room temperature at a rate of 0.8 nm/min.
    Type: Application
    Filed: April 6, 2017
    Publication date: July 27, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Connie H. Li, Glenn G. Jernigan, Berend T. Jonker, Ramasis Goswami, Carl S. Hellberg
  • Patent number: 9673047
    Abstract: A method of making a SiC buffer layer on a Si substrate comprising depositing an amorphous carbon layer on a Si(001) substrate, controlling the thickness of the amorphous carbon layer by controlling the time of the step of depositing the amorphous carbon layer, and forming a deposited film. A 3C—SiC buffer layer on Si(001) comprising a porous buffer layer of 3C—SiC on a Si substrate wherein the porous buffer layer is produced through a solid state reaction.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: June 6, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Connie H. Li, Glenn G. Jernigan, Berend T. Jonker, Ramasis Goswami, Carl S. Hellberg
  • Publication number: 20170069819
    Abstract: A hydrogen-free amorphous dielectric insulating film having a high material density and a low density of tunneling states. The film is prepared by deposition of a dielectric material on a substrate having a high substrate temperature Tsub under high vacuum and at a controlled low deposition rate. In one embodiment, the film is amorphous silicon while in another embodiment the film is amorphous germanium.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Xiao Liu, Daniel R. Queen, Frances Hellman, Thomas H. Metcalf, Matthew R. Abernathy, Glenn G. Jernigan
  • Publication number: 20160118465
    Abstract: A method of making a SiC buffer layer on a Si substrate comprising depositing an amorphous carbon layer on a Si(001) substrate, controlling the thickness of the amorphous carbon layer by controlling the time of the step of depositing the amorphous carbon layer, and forming a deposited film. A 3C-SiC buffer layer on Si(001) comprising a porous buffer layer of 3C-SiC on a Si substrate wherein the porous buffer layer is produced through a solid state reaction.
    Type: Application
    Filed: October 1, 2015
    Publication date: April 28, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Connie H. Li, Glenn G. Jernigan, Berend T. Jonker, Ramasis Goswami, Carl S. Hellberg
  • Patent number: 9063063
    Abstract: A method of making a low-dimensional material chemical vapor sensor comprising exfoliating MoS2, applying the monolayer flakes of MoS2 onto a SiO2/Si wafer, applying a methylmethacrylate (MMA)/polymethylmethacrylate (PMMA) film, defining trenches for the deposition of metal contacts, and depositing one of Ti/Au, Au, and Pt in the trench and resulting in a MoS2 sensor. A low-dimensional material chemical vapor sensor comprising monolayer flakes of MoS2, trenches in the SiO2/Si wafer, metal contacts in the trenches, and thereby resulting in a MoS2 sensor. A full spectrum sensing suite comprising similarly fabricated parallel sensors made from a variety of low-dimensional materials including graphene, carbon nanotubes, MoS2, BN, and the family of transition metal dichalcogenides. The sensing suites are small, robust, sensitive, low-power, inexpensive, and fast in their response to chemical vapor analytes.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: June 23, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, Enrique Cobas, Paul M Campbell, Glenn G. Jernigan, Berend T Jonker
  • Patent number: 9028919
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: May 12, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Patent number: 8920877
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: December 30, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20140308437
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20140273259
    Abstract: A method of making a low-dimensional material chemical vapor sensor comprising exfoliating MoS2, applying the monolayer flakes of MoS2 onto a SiO2/Si wafer, applying a methylmethacrylate (MMA)/polymethylmethacrylate (PMMA) film, defining trenches for the deposition of metal contacts, and depositing one of Ti/Au, Au, and Pt in the trench and resulting in a MoS2 sensor. A low-dimensional material chemical vapor sensor comprising monolayer flakes of MoS2, trenches in the SiO2/Si wafer, metal contacts in the trenches, and thereby resulting in a MoS2 sensor. A full spectrum sensing suite comprising similarly fabricated parallel sensors made from a variety of low-dimensional materials including graphene, carbon nanotubes, MoS2, BN, and the family of transition metal dichalcogenides. The sensing suites are small, robust, sensitive, low-power, inexpensive, and fast in their response to chemical vapor analytes.
    Type: Application
    Filed: November 8, 2013
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, Enrique Cobas, Paul M. Campbell, Glenn G. Jernigan, Berend T. Jonker
  • Patent number: 8669168
    Abstract: A method of preparing GaN material includes subjecting a GaN substrate to at least two cycles of Ga deposition and desorption, then applying a layer of AlN to the GaN substrate, then growing GaN on the AlN layer by molecular beam epitaxy. This results in reduced concentrations of oxygen, carbon, and silicon impurities.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: March 11, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: David F. Storm, Douglas S. Katzer, Glenn G. Jernigan, Steven C. Binari
  • Publication number: 20130302997
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 14, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, JR., Glenn G. Jernigan
  • Patent number: 8518491
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 27, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, Jr., Glenn G. Jernigan
  • Publication number: 20130017323
    Abstract: Processes for preparation of an epitaxial graphene surface to make it suitable for deposition of high-? oxide-based dielectric compounds such as Al2O3, HfO2, TaO5, or TiO2 are provided. A first process combines ex situ wet chemistry conditioning of an epitaxially grown graphene sample with an in situ pulsing sequence in the ALD reactor. A second process combines ex situ dry chemistry conditioning of the epitaxially grown graphene sample with the in situ pulsing sequence.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Nelson Garces, Virginia D. Wheeler, David Kurt Gaskill, Charles R. Eddy, JR., Glenn G. Jernigan