Patents by Inventor Glenn Garrett

Glenn Garrett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11377720
    Abstract: Nickel based alloys capable of forming bulk metallic glass are provided. The alloys include Ni—Cr—Si—B compositions, with additions of P and Mo, and are capable of forming a metallic glass rod having a diameter of at least 1 mm. In one example of the present disclosure, the Ni—Cr—Mo—Si—B—P composition includes about 4.5 to 5 atomic percent of Cr, about 0.5 to 1 atomic percent of Mo, about 5.75 atomic percent of Si, about 11.75 atomic percent of B, about 5 atomic percent of P, and the balance is Ni, and wherein the critical metallic glass rod diameter is between 2.5 and 3 mm and the notch toughness between 55 and 65 MPa m1/2.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: July 5, 2022
    Assignee: Glassimetal Technology Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Patent number: 10927440
    Abstract: The disclosure provides Zr—Ti—Cu—Ni—Al metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: February 23, 2021
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Glenn Garrett, Kyung-Hee Han, Georg Kaltenboeck, Chase Crewdson, Marios D. Demetriou, William L. Johnson
  • Patent number: 10895004
    Abstract: The present disclosure provides Au-based alloys comprising Si capable of forming metallic glass matrix composites, and metallic glass matrix composites formed thereof. The Au-based metallic glass matrix composites according to the present disclosure comprise a primary-Au crystalline phase and a metallic glass phase and are free of any other phase. In certain embodiments, the metallic glass matrix composites according to the present disclosure satisfy the 18-Karat Gold Alloy Hallmark.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: January 19, 2021
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, William L. Johnson, Marios D. Demetriou, Glenn Garrett, Kyung-Hee Han, Maximilien E. Launey
  • Patent number: 10458008
    Abstract: The disclosure is directed to Zr—Co—Ni—Al alloys that optionally comprise Ti and are capable of forming metallic glasses having a combination of high glass forming ability and high reflectivity. Compositional regions in the Zr—Co—Ni—Al and Zr—Ti—Co—Ni—Al alloys are disclosed where the metallic glass-forming alloys demonstrate a high glass forming ability while the metallic glasses formed from the alloys exhibit a high reflectivity. The metallic glass-forming alloys demonstrate a critical plate thickness of at least 2 mm, while the metallic glasses formed from the alloys demonstrate a CIELAB L* value of at least 78.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: October 29, 2019
    Assignee: GlassiMetal Technology, Inc.
    Inventors: Jong Hyun Na, Kyung-Hee Han, Glenn Garrett, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Publication number: 20180312949
    Abstract: The disclosure is directed to Zr—Co—Ni—Al alloys that optionally comprise Ti and are capable of forming metallic glasses having a combination of high glass forming ability and high reflectivity. Compositional regions in the Zr—Co—Ni—Al and Zr—Ti—Co—Ni—Al alloys are disclosed where the metallic glass-forming alloys demonstrate a high glass forming ability while the metallic glasses formed from the alloys exhibit a high reflectivity. The metallic glass-forming alloys demonstrate a critical plate thickness of at least 2 mm, while the metallic glasses formed from the alloys demonstrate a CIELAB L* value of at least 78.
    Type: Application
    Filed: April 23, 2018
    Publication date: November 1, 2018
    Applicant: GlassiMetal Technology, Inc.
    Inventors: Jong Hyun Na, Kyung-Hee Han, Glenn Garrett, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Patent number: 10086246
    Abstract: Golf clubs formed from bulk-solidifying amorphous metals (i.e., metallic glasses) having high elastic modulus and fracture toughness, and to methods of forming the same are provided. Among other components, the golf club materials disclosed enable fabrication of flexural membranes or shells used in golf club heads (drivers, fairways, hybrids, irons, wedges and putters) exhibiting enhanced flexural or bending compliance together with the ability to deform plastically and avoid brittle fracture or catastrophic failure when overloaded under bending loads. Further, the high strength of the material and its density, comparable to that of steel, enables the redistribution of mass in the golf club while maintaining a desired overall target mass.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: October 2, 2018
    Assignee: GlassiMetal Technology, Inc.
    Inventors: William L. Johnson, David S. Lee, Marios D. Demetriou, Jong Hyun Na, Glenn Garrett
  • Patent number: 10036087
    Abstract: The disclosure provides Pt—Cu—P glass-forming alloys bearing at least one of B, Ag, and Au, where each of B, Ag, and Au can contribute to improve the glass forming ability of the alloy in relation to the alloy that is free of these elements. The alloys are capable of forming metallic glass rods with diameters in excess of 3 mm, and in some embodiments 50 mm or larger. The alloys and metallic glasses can satisfy platinum jewelry hallmarks PT750, PT800, PT850, and PT900.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: July 31, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Marios D. Demetriou, Oscar Abarca, Maximilien Launey, William L. Johnson, Glenn Garrett, Danielle Duggins, Chase Crewdson, Kyung-Hee Han
  • Patent number: 9920410
    Abstract: Ni-based Cr- and P-bearing alloys that can from centimeter-thick amorphous articles are provided. Within the family of alloys, millimeter-thick bulk-glassy articles can undergo macroscopic plastic bending under load without fracturing catastrophically.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: March 20, 2018
    Assignee: California Institute of Technology
    Inventors: Jong Hyun Na, Marios D. Demetriou, William L. Johnson, Glenn Garrett
  • Patent number: 9920400
    Abstract: The disclosure is directed to Ni—Cr—P eutectic alloys bearing Nb as substitution for Cr that are capable of forming metallic glasses with critical rod diameter of at least 1 mm or more. With further minority addition of Si as replacement for P, such alloys are capable of forming metallic glasses with critical rod diameters as high as 10 mm or more. Specifically, Ni-based compositions with a Cr content of between 5 and 14 atomic percent, Nb content of between 3 and 4 atomic percent, P content of between 17.5 and 19 atomic percent, and Si content of between 1 and 2 atomic percent, were capable of forming bulk metallic glass rods with diameters as large as 6 mm or larger.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: March 20, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Danielle Duggins, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Patent number: 9863024
    Abstract: A Ni-based bulk metallic glass forming alloy is provided. The alloy includes Ni(100-a-b-c-d)CraNbbPcBd, where an atomic percent of chromium (Cr) a ranges from 3 to 13, an atomic percent of niobium (Nb) b is determined by x?y*a, where x ranges from 3.8 to 4.2 and y ranges from 0.11 to 0.14, an atomic percent of phosphorus (P) c ranges from 16.25 to 17, an atomic percent of boron (B) d ranges from 2.75 to 3.5, and the balance is nickel (Ni), and where the alloy is capable of forming a metallic glass object having a lateral dimension of at least 6 mm, where the metallic glass has a stress intensity factor at crack initiation when measured on a 3 mm diameter rod containing a notch with length between 1 and 2 mm and root radius between 0.1 and 0.15 mm, the stress intensity factor being at least 70 MPa m1/2.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: January 9, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey
  • Patent number: 9863025
    Abstract: The present disclosure is directed to Ni—P—B alloys and glasses containing small fractions of Nb and Ta and optionally Mn. Over a specific range, the alloys are capable of forming bulk metallic glasses having critical casting thickness in excess of 1 mm. In one embodiment, compositions with a Mn content of between 3 and 4 atomic percent, Nb content of about 3 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, where the balance in Ni, were capable of forming bulk metallic glass rods with diameters as large as 5 mm or larger. In another embodiment, Ni-based compositions with a Mn content of between 5 and 7 atomic percent, Ta content of between 1 and 2 atomic percent, B content of about 3 atomic percent, and P content of about 16.5 atomic percent, where the balance in Ni, were capable of forming bulk metallic glass rods with diameters as large as 5 mm or larger.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: January 9, 2018
    Assignees: Glassimetal Technology, Inc., Apple Inc.
    Inventors: Jong Hyun Na, Danielle Duggins, Michael Floyd, Glenn Garrett, Maximilien Launey, Marios D. Demetriou, William L. Johnson
  • Patent number: 9816166
    Abstract: The disclosure is directed to Ni—P—B alloys bearing Mn and optionally Cr and Mo that are capable of forming a metallic glass, and more particularly metallic glass rods with diameters at least 1 mm and as large as 5 mm or larger. The disclosure is further directed to Ni—Mn—Cr—Mo—P—B alloys capable of demonstrating a good combination of glass forming ability, strength, toughness, bending ductility, and corrosion resistance.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: November 14, 2017
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey, Danielle Duggins
  • Publication number: 20170241006
    Abstract: The disclosure provides Zr—Ti—Cu—Ni—Al metallic glass-forming alloys and metallic glasses that have a high glass forming ability along with a high thermal stability of the supercooled liquid against crystallization.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 24, 2017
    Inventors: Jong Hyun Na, Glenn Garrett, Kyung-Hee Han, Georg Kaltenboeck, Chase Crewdson, Marios D. Demetriou, William L. Johnson
  • Publication number: 20170241003
    Abstract: The present disclosure provides Au-based alloys comprising Si capable of forming metallic glass matrix composites, and metallic glass matrix composites formed thereof. The Au-based metallic glass matrix composites according to the present disclosure comprise a primary-Au crystalline phase and a metallic glass phase and are free of any other phase. In certain embodiments, the metallic glass matrix composites according to the present disclosure satisfy the 18-Karat Gold Alloy Hallmark.
    Type: Application
    Filed: February 21, 2017
    Publication date: August 24, 2017
    Applicant: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, William L. Johnson, Marios D. Demetriou, Glenn Garrett, Kyung-Hee Han, Maximilien E. Launey
  • Patent number: 9708699
    Abstract: The present disclosure provides specified ranges in the Fe—Mo—Ni—Cr—P—C—B alloys such that the alloys are capable of forming bulk glasses having unexpectedly high glass-forming ability. The critical rod diameter of the disclosed alloys is at least 10 mm.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: July 18, 2017
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Publication number: 20170152588
    Abstract: Ni-based Cr- and P-bearing alloys that can from centimeter-thick amorphous articles are provided. Within the family of alloys, millimeter-thick bulk-glassy articles can undergo macroscopic plastic bending under load without fracturing catastrophically.
    Type: Application
    Filed: July 13, 2015
    Publication date: June 1, 2017
    Inventors: Jong Hyun Na, Marios D. Demetriou, William L. Johnson, Glenn Garrett
  • Publication number: 20170088933
    Abstract: Surface treatment methods for Ni-based metallic glasses are provided that promote passivation and decrease the amount of Ni released when the Ni-based metallic glass is exposed to a saline containing environment.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 30, 2017
    Inventors: Maximilien Launey, Marios D. Demetriou, Glenn Garrett, Jong Hyun Na, William L. Johnson
  • Patent number: 9556504
    Abstract: A bulk-glass forming Ni—Cr—Nb—P—B alloy is provided. The alloy includes Ni(100?a?b?c?d)CraTabPcBd, where the atomic percent a is between 3 and 11, the atomic percent b is between 1.75 and 4, the atomic percent c is between 14 and 17.5, and the atomic percent d is between 2.5 and 5. The alloy is capable of forming a metallic glass having a lateral dimension of at least 3 mm.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: January 31, 2017
    Assignee: Glassimetal Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett
  • Patent number: 9534283
    Abstract: Ni—Fe—Si—B and Ni—Fe—Si—B—P metallic glass forming alloys and metallic glasses are provided. Metallic glass rods with diameters of at least one, up to three millimeters, or more can be formed from the disclosed alloys. The disclosed metallic glasses demonstrate high yield strength combined with high corrosion resistance, while for a relatively high Fe contents the metallic glasses are ferromagnetic.
    Type: Grant
    Filed: January 7, 2014
    Date of Patent: January 3, 2017
    Assignee: Glassimental Technology, Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Marios D. Demetriou, William L. Johnson, Glenn Garrett, Maximilien Launey
  • Patent number: 9365916
    Abstract: An alloy comprising Fe, Ni, P, B and Ge is disclosed, having a composition according to the formula [Fe1-yNiy](100-a-b-c)PaBbGec, where a, b, c subscripts denote atomic percent; y subscript denotes atomic fraction, a is between 9 and 12, b is between 5.5 and 7.5, c is between 2 and 6, and y is between 0.45 and 0.55. Metallic glass rods with diameter of at least 1 mm can be formed from the alloy by rapid quenching from the molten state.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: June 14, 2016
    Assignee: Glassimetal Technology, Inc.
    Inventors: Michael Floyd, Jong Hyun Na, Marios D. Demetriou, William L. Johnson, Glenn Garrett