Patents by Inventor Glenn J. Leedy

Glenn J. Leedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180231605
    Abstract: The Configurable Vertical Integration [CVI] invention pertains to methods and apparatus for the enhancement of yields of 3D or stacked integrated circuits and herein referred to as a CVI Integrated Circuit [CVI IC]. The CVI methods require no testing of circuit layer components prior to their fabrication as part of a 3D integrated circuit. The CVI invention uses active circuitry to configure the CVI IC as a means to isolate or prevent the use of defective circuitry. CVI circuit configuration method can be predominately described as a large grain method.
    Type: Application
    Filed: April 11, 2018
    Publication date: August 16, 2018
    Inventor: Glenn J. Leedy
  • Publication number: 20180132056
    Abstract: The Vertical System Integration (VSI) invention herein is a method for integration of disparate electronic, optical and MEMS technologies into a single integrated circuit die or component and wherein the individual device layers used in the VSI fabrication processes are preferably previously fabricated components intended for generic multiple application use and not necessarily limited in its use to a specific application. The VSI method of integration lowers the cost difference between lower volume custom electronic products and high volume generic use electronic products by eliminating or reducing circuit design, layout, tooling and fabrication costs.
    Type: Application
    Filed: July 11, 2017
    Publication date: May 10, 2018
    Inventor: Glenn J Leedy
  • Publication number: 20180132055
    Abstract: The Vertical System Integration (VSI) invention herein is a method for integration of disparate electronic, optical and MEMS technologies into a single integrated circuit die or component and wherein the individual device layers used in the VSI fabrication processes are preferably previously fabricated components intended for generic multiple application use and not necessarily limited in its use to a specific application. The VSI method of integration lowers the cost difference between lower volume custom electronic products and high volume generic use electronic products by eliminating or reducing circuit design, layout, tooling and fabrication costs.
    Type: Application
    Filed: May 19, 2017
    Publication date: May 10, 2018
    Inventor: Glenn J Leedy
  • Publication number: 20180017614
    Abstract: The Configurable Vertical Integration [CVI] invention pertains to methods and apparatus for the enhancement of yields of 3D or stacked integrated circuits and herein referred to as a CVI Integrated Circuit [CVI IC]. The CVI methods require no testing of circuit layer components prior to their fabrication as part of a 3D integrated circuit. The CVI invention uses active circuitry to configure the CVI IC as a means to isolate or prevent the use of defective circuitry. CVI circuit configuration method can be predominately described as a large grain method.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventor: Glenn J Leedy
  • Publication number: 20170330876
    Abstract: The Vertical System Integration (VSI) invention herein is a method for integration of disparate electronic, optical and MEMS technologies into a single integrated circuit die or component and wherein the individual device layers used in the VSI fabrication processes are preferably previously fabricated components intended for generic multiple application use and not necessarily limited in its use to a specific application. The VSI method of integration lowers the cost difference between lower volume custom electronic products and high volume generic use electronic products by eliminating or reducing circuit design, layout, tooling and fabrication costs.
    Type: Application
    Filed: December 2, 2014
    Publication date: November 16, 2017
    Inventor: Glenn J. Leedy
  • Patent number: 9804221
    Abstract: The Configurable Vertical Integration [CVI] invention pertains to methods and apparatus for the enhancement of yields of 3D or stacked integrated circuits and herein referred to as a CVI Integrated Circuit [CVI IC]. The CVI methods require no testing of circuit layer components prior to their fabrication as part of a 3D integrated circuit. The CVI invention uses active circuitry to configure the CVI IC as a means to isolate or prevent the use of defective circuitry. CVI circuit configuration method can be predominately described as a large grain method.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: October 31, 2017
    Inventor: Glenn J Leedy
  • Patent number: 9726716
    Abstract: The Configurable Vertical Integration [CVI] invention pertains to methods and apparatus for the enhancement of yields of 3D or stacked integrated circuits and herein referred to as a CVI Integrated Circuit [CVI IC]. The CVI methods require no testing of circuit layer components prior to their fabrication as part of a 3D integrated circuit. The CVI invention uses active circuitry to configure the CVI IC as a means to isolate or prevent the use of defective circuitry. CVI circuit configuration method can be predominately described as a large grain method.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: August 8, 2017
    Inventor: Glenn J Leedy
  • Patent number: 9401183
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 26, 2016
    Inventor: Glenn J. Leedy
  • Publication number: 20160155722
    Abstract: The Vertical System Integration (VSI) invention herein is a method for integration of disparate electronic, optical and MEMS technologies into a single integrated circuit die or component and wherein the individual device layers used in the VSI fabrication processes are preferably previously fabricated components intended for generic multiple application use and not necessarily limited in its use to a specific application. The VSI method of integration lowers the cost difference between lower volume custom electronic products and high volume generic use electronic products by eliminating or reducing circuit design, layout, tooling and fabrication costs.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 2, 2016
    Inventor: Glenn J. Leedy
  • Patent number: 9087556
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: July 21, 2015
    Inventor: Glenn J Leedy
  • Publication number: 20150130500
    Abstract: The Configurable Vertical Integration [CVI] invention pertains to methods and apparatus for the enhancement of yields of 3D or stacked integrated circuits and herein referred to as a CVI Integrated Circuit [CVI IC]. The CVI methods require no testing of circuit layer components prior to their fabrication as part of a 3D integrated circuit. The CVI invention uses active circuitry to configure the CVI IC as a means to isolate or prevent the use of defective circuitry. CVI circuit configuration method can be predominately described as a large grain method.
    Type: Application
    Filed: August 26, 2014
    Publication date: May 14, 2015
    Inventor: Glenn J. Leedy
  • Patent number: 8933570
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: January 13, 2015
    Assignee: Elm Technology Corp.
    Inventor: Glenn J. Leedy
  • Patent number: 8933715
    Abstract: The Configurable Vertical Integration [CVI] invention pertains to methods and apparatus for the enhancement of yields of 3D or stacked integrated circuits and herein referred to as a CVI Integrated Circuit [CVI IC]. The CVI methods require no testing of circuit layer components prior to their fabrication as part of a 3D integrated circuit. The CVI invention uses active circuitry to configure the CVI IC as a means to isolate or prevent the use of defective circuitry. CVI circuit configuration method can be predominately described as a large grain method.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 13, 2015
    Assignee: Elm Technology Corporation
    Inventor: Glenn J. Leedy
  • Patent number: 8928119
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: January 6, 2015
    Inventor: Glenn J. Leedy
  • Publication number: 20140361806
    Abstract: The Configurable Vertical Integration [CVI] invention pertains to methods and apparatus for the enhancement of yields of 3D or stacked integrated circuits and herein referred to as a CVI Integrated Circuit [CVI IC]. The CVI methods require no testing of circuit layer components prior to their fabrication as part of a 3D integrated circuit. The CVI invention uses active circuitry to configure the CVI IC as a means to isolate or prevent the use of defective circuitry. CVI circuit configuration method can be predominately described as a large grain method.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventor: Glenn J. Leedy
  • Patent number: 8907499
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 9, 2014
    Inventor: Glenn J Leedy
  • Publication number: 20140346649
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventor: Glenn J. Leedy
  • Patent number: 8841778
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 23, 2014
    Inventor: Glenn J Leedy
  • Patent number: 8824159
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 2, 2014
    Inventor: Glenn J. Leedy
  • Patent number: 8796862
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: August 5, 2014
    Inventor: Glenn J Leedy