Patents by Inventor Glenn Matthies

Glenn Matthies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150267
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: December 8, 2023
    Publication date: May 9, 2024
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 11884607
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: January 30, 2024
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Publication number: 20220396536
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 15, 2022
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 11459284
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: October 4, 2022
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Publication number: 20210171423
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 10954177
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: March 23, 2021
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Patent number: 10934233
    Abstract: The present invention relates to a process for the preparation of haloethylenes, and preferably perhaloethylenes, by the gas-phase dechlorination of haloethanes in the presence of a catalyst and optionally in the presence of an alkene or an alkane. In particular aspects, the invention relates to a gas-phase process for preparing chlorotrifluoroethylene (CTFE). More particularly, the present invention relates to a gas-phase process for preparing CTFE from 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) by dechlorination in the presence of an alkene or an alkane and a catalyst.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: March 2, 2021
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haridasan K. Nair, Rajiv Ratna Singh, Glenn Matthies
  • Publication number: 20200062679
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 27, 2020
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Publication number: 20190241489
    Abstract: The present invention relates to a process for the preparation of haloethylenes, and preferably perhaloethylenes, by the gas-phase dechlorination of haloethanes in the presence of a catalyst and optionally in the presence of an alkene or an alkane. In particular aspects, the invention relates to a gas-phase process for preparing chlorotrifluoroethylene (CTFE). More particularly, the present invention relates to a gas-phase process for preparing CTFE from 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) by dechlorination in the presence of an alkene or an alkane and a catalyst.
    Type: Application
    Filed: February 5, 2019
    Publication date: August 8, 2019
    Inventors: Haridasan K. Nair, Rajiv Ratna Singh, Glenn Matthies
  • Patent number: 10005705
    Abstract: The production of 1, 1, 2-trifluoro-2-(trifluoromethyl)cyclobutane (TFMCB). More specifically, the present invention relates to a process for making 1, 1, 2-trifluoro-2-(trifluoromethyl)cyclobutane via a continuous catalytic reaction from commercially available raw materials ethylene and hexafluoropropene.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 26, 2018
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Rajiv Banavali, Yian Zhai, Glenn Matthies
  • Publication number: 20180065905
    Abstract: The production of 1, 1, 2-trifluoro-2-(trifluoromethyl)cyclobutane (TFMCB). More specifically, the present invention relates to a process for making 1, 1, 2-trifluoro-2-(trifluoromethyl)cyclobutane via a continuous catalytic reaction from commercially available raw materials ethylene and hexafluoropropene.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Haridasan K. Nair, Rajiv Banavali, Yian Zhai, Glenn Matthies
  • Patent number: 9856193
    Abstract: The production of 1,1,2-trifluoro-2-(trifluoromethyl)cyclobutane (TFMCB). More specifically, the present invention relates to a process for making 1,1,2-trifluoro-2-(trifluoromethyl)cyclobutane via a continuous catalytic reaction from commercially available raw materials ethylene and hexafluoropropene.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 2, 2018
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, Rajiv Banavali, Yian Zhai, Glenn Matthies
  • Publication number: 20170233316
    Abstract: The production of 1,1,2-trifluoro-2-(trifluoromethyl)cyclobutane (TFMCB). More specifically, the present invention relates to a process for making 1,1,2-trifluoro-2-(trifluoromethyl)cyclobutane via a continuous catalytic reaction from commercially available raw materials ethylene and hexafluoropropene.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventors: Haridasan K. Nair, Rajiv Banavali, Yian Zhai, Glenn Matthies
  • Patent number: 9353030
    Abstract: Disclosed is a one step process for making of 1,1,1,4,4,4-hexafluoro-2-butene. More specifically, the present invention provides a process for making hexafluoro-2-butene, continuously, from 2-chloro-3,3,3-trifluoropronene using Fe2O3/NiO impregnated carbon catalyst at 600° to 650° C.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: May 31, 2016
    Assignee: Honeywell International Inc.
    Inventors: Haridasan K. Nair, David Nalewajek, Glenn Matthies
  • Publication number: 20160023972
    Abstract: Disclosed is a one step process for making of 1,1,1,4,4,4-hexafluoro-2-butene. More specifically, the present invention provides a process for making hexafluoro-2-butene, continuously, from 2-chloro-3,3,3-trifluoropronene using Fe2O3/NiO impregnated carbon catalyst at 600° to 650° C.
    Type: Application
    Filed: June 12, 2015
    Publication date: January 28, 2016
    Inventors: Haridasan K. Nair, David Nalewajek, Glenn Matthies