Patents by Inventor Glenn Zillmer

Glenn Zillmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070299477
    Abstract: The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction via the innervated myocardial substrate receives one or more discrete pulses of electrical stimulation during the refractory period of said innervated myocardial substrate.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 27, 2007
    Inventors: Karen Kleckner, Kathleen Prieve, Jeffrey Gillberg, Ren Zhou, Kenneth Anderson, D. Deno, Glenn Zillmer, Ruth Klepfer, Vincent Splett, David Euler, Lawrence Mulligan, Edwin Duffin, David Igel, John Burnes
  • Publication number: 20070265666
    Abstract: One aspect of the invention involves a possible fault scenario due to a breach of an inner layer of insulation of an elongated medical electrical lead which couples an active electrical circuit for an active implantable medical device (AIMD)—typically within a conductive AIMD housing—to a sensor disposed within a sensor capsule. In one form, the AIMD provides physiological sensing of a patient parameter, such as endocardial pressure via a chronically implanted absolute pressure sensor. In such a physiological monitor, a high impedance connection is established between the active electrical circuit and the conductive AIMD housing. In a therapy delivering AIMD, a high impedance connection is established between therapy electrodes and the active electrical circuit. As a result, any errant electrical current(s) will be shunted directly to the reference-ground of the sensor-bearing lead in lieu of traveling through a patient's tissue or conductive body fluid.
    Type: Application
    Filed: April 27, 2006
    Publication date: November 15, 2007
    Inventors: Jonathan Roberts, W. Wold, Glenn Zillmer
  • Publication number: 20070265671
    Abstract: The present disclosure provides one or more structures, techniques, components and/or methods for avoiding or positively resolving failure modes for an implanted medical device coupled to one or more sensors. A common fault scenario involves unintended stimulation during therapy delivery. A pacing stimulus can couple to exposed conductive portion(s) of a medical electrical lead (e.g., a tip portion) that includes a sensor to cause the stimulation. Stimulation also occurs due to insulation breaches of a lead. Stimulation can also result from a breach in insulation surrounding a conductive set screw that couples the lead to active circuitry. Stimulation also results when high energy therapy energy shunts to sensor circuitry (e.g., sensor bus) via insulation breach of the sensor lead and/or the circuitry.
    Type: Application
    Filed: April 27, 2006
    Publication date: November 15, 2007
    Inventors: Jonathan Roberts, W. Wold, Glenn Zillmer
  • Publication number: 20070179550
    Abstract: An implantable medical device is configured so that all of the major components including a housing and attached leads are disposed within the vasculature of a patient. A tether extends from the housing of the device to an implant location where the tether is secured to tissue outside of the vasculature. In this manner, an intravascular medical device may be implanted at a location remote from final placement, delivered via the vasculature and anchored at the initial entry point.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 2, 2007
    Inventors: Charles Dennis, George Klein, Ursula Gebhardt, Kenneth Anderson, Glenn Zillmer
  • Publication number: 20070179581
    Abstract: An implantable medical device is configured so that all of the major components including a housing and attached leads are disposed within the vasculature of a patient. A tether extends from the housing of the device to an implant location where the tether is secured to tissue outside of the vasculature. In this manner, an intravascular medical device may be implanted at a location remote from final placement, delivered via the vasculature and anchored at the initial entry point.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 2, 2007
    Inventors: Charles Dennis, George Klein, Ursula Gebhardt, Kenneth Anderson, Glenn Zillmer
  • Publication number: 20070179552
    Abstract: An implantable medical device is configured so that all of the major components including a housing and attached leads are disposed within the vasculature of a patient. A tether extends from the housing of the device to an implant location where the tether is secured to tissue outside of the vasculature. In this manner, an intravascular medical device may be implanted at a location remote from final placement, delivered via the vasculature and anchored at the initial entry point.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 2, 2007
    Inventors: Charles Dennis, George Klein, Ursula Gebhardt, Kenneth Anderson, Glenn Zillmer
  • Publication number: 20060247698
    Abstract: In some embodiments, a method of operating an implantable cardiac pacing device to provide coupled ventricular pacing may include one or more of the following steps: (a) sensing ventricular events at a first ventricular site and generating a ventricular sense event signal in response thereto, (b) providing coupled pacing pulses simultaneously at the first ventricular site and at a second ventricular site at a ventricular extra stimulus interval (VESI) timed from immediately preceding ventricular sense event signals sufficient to effect post-extra-systolic potentiation (PESP) of the ventricular sites, and (c) providing pacing pulse at the second ventricular site after sensing ventricular events at the first ventricular site.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: John Burnes, Glenn Zillmer, D. Deno
  • Publication number: 20050101998
    Abstract: An extra-systolic stimulation (ESS) therapy addresses cardiac dysfunction including heart failure. ESS therapy employs atrial and/or ventricular extra-systoles via pacing-level stimulation to a heart. These extra-systoles must be timed correctly to achieve beneficial effects on myocardial mechanics (efficacy) while maintaining an extremely low level of risk of arrhythmia induction and excellent ICD-like arrhythmia sensing and detection (security). The present invention relates to therapy delivery guidance and options for improved ESS therapy delivery. These methods may be employed individually or in combinations in an external or implantable ESS therapy delivery device.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 12, 2005
    Inventors: Karen Kleckner, Kathleen Prieve, Jeffrey Gillberg, Ren Zhou, Kenneth Anderson, D. Deno, Glenn Zillmer, Ruth Klepfer, Vincent Splett
  • Publication number: 20050090872
    Abstract: The present invention relates to the secure delivery of an extra-systolic stimulation (ESS) therapy to treat cardiac dysfunction that employs atrial and/or ventricular extra-systoles via pacing-like stimulation of the heart. These extra-systoles must be timed correctly to achieve beneficial effects on myocardial mechanics (benefit) while maintaining an extremely low level of risk of arrhythmia induction and excellent ICD-like arrhythmia sensing and detection (security). Further experience with ESS has led to improved implementation methods that depend on better blanking, ESS stimulation timing (of an “extra-systolic interval” or ESI), and ESS therapy delivery options and guidance. These methods may be employed individually or in combinations in an external or implantable ESS therapy delivery device.
    Type: Application
    Filed: October 24, 2003
    Publication date: April 28, 2005
    Inventors: D. Deno, Vincent Splett, Jeffrey Gillberg, Glenn Zillmer, Ruth Klepfer, Karen Kleckner
  • Publication number: 20050080460
    Abstract: A fluid status monitoring system for use in implantable cardiac stimulation or monitoring devices is provided for monitoring changes in thoracic fluid content. A fluid status monitor includes excitation pulse generating and control circuitry, and voltage and current measurement and control circuitry for performing a series of cardiac-gated, intra-thoracic impedance measurements. The cardiac-gated measurements are filtered or time-averaged to provide a fluid status impedance value, with respiratory noise removed. Based on comparative analysis of the fluid status impedance value, a clinically relevant trend in fluid status may be tentatively diagnosed and a fluid status response provided. Cross-check intra-thoracic impedance measurements performed using the same or a different excitation pathway and a different measurement pathway than the primary intra-thoracic impedance measurement configuration may be used to verify a tentative diagnosis.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 14, 2005
    Inventors: Li Wang, Yong Cho, Kevin Kuehn, Glenn Zillmer, Nirav Sheth
  • Publication number: 20050075674
    Abstract: Techniques for delivering ESS to a heart of a patient are disclosed. An implantable medical device delivers ESS stimulation, and in some embodiments pacing stimulation, to a chamber of the heart via a first electrode set. The implantable medical device senses electrical activity within the chamber via a second set of electrodes. In some embodiments, the implantable medical device is able to apply a shorter blanking interval than is typical in the pacing art to a sense amplifier coupled to the second set of electrodes, allowing the implantable medical device to better detect arrhythmias and evoked responses. A variety of electrodes may be used in conjunction with the present invention; including without limitation, tip, ring, coil, can-based, endocardial, epicardial, pericardial, cardiac vein-based, subcutaneous, and/or surface electrodes.
    Type: Application
    Filed: October 7, 2003
    Publication date: April 7, 2005
    Inventors: Glenn Zillmer, D. Deno, Nirav Sheth
  • Publication number: 20050075673
    Abstract: An implantable cardiac stimulation device capable of delivering ESS, monitoring for myocardial ischemia and responding to the detection of myocardial ischemia by modifying the delivery of ESS. Modification of ESS delivery may include disabling ESS, initiating ESS, and/or modifying ESS control parameters.
    Type: Application
    Filed: October 7, 2003
    Publication date: April 7, 2005
    Inventors: Dwight Warkentin, Robert Stadler, Glenn Zillmer, D. Deno
  • Publication number: 20050075677
    Abstract: An implantable medical device includes two or more pacing output channels coupled to a single unipolar electrode or bipolar electrode pair. The implantable medical device can control each pacing output channel to deliver pacing pulses via the single electrode or electrode pair at different times and with different amplitudes. In some embodiments, the implantable medical device is used to deliver extra-systolic stimulation therapy. In such embodiments, a first pacing output channel can be controlled to deliver pacing pulses via the electrode or electrode pair with an amplitude sufficient to depolarize a chamber of the heart. A second pacing output channel is controlled to deliver extra-systolic pulses, which can have a lower amplitude than the pacing pulses, via the electrode or electrode pair an extra-systolic interval after sensed or paced depolarizations of the chamber. In some embodiments, the implantable medical device delivers ESS therapy and cardiac resynchronization therapy (CRT).
    Type: Application
    Filed: October 7, 2003
    Publication date: April 7, 2005
    Inventors: Vincent Ganion, Glenn Zillmer