Patents by Inventor Gloria WONG

Gloria WONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230301131
    Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 21, 2023
    Inventors: Gloria Wong, Jaein Choi, Sunggu Kang, Hairong Tang, Xiaodan Zhu, Wendi Chang, Kanuo C. Kustra, Rui Liu, Cheng Chen, Teruo Sasagawa, Wookyung Bae
  • Publication number: 20230240100
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Application
    Filed: March 31, 2023
    Publication date: July 27, 2023
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Patent number: 11700738
    Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: July 11, 2023
    Assignee: Apple Inc.
    Inventors: Gloria Wong, Jaein Choi, Sunggu Kang, Hairong Tang, Xiaodan Zhu, Wendi Chang, Kanuo C. Kustra, Rui Liu, Cheng Chen, Teruo Sasagawa, Wookyung Bae
  • Patent number: 11647650
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: May 9, 2023
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Patent number: 11309372
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 19, 2022
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Andrew Lin, Cheuk Chi Lo, Chun-Yao Huang, Gloria Wong, Hairong Tang, Hitoshi Yamamoto, James E. Pedder, KiBeom Kim, Kwang Ohk Cheon, Lei Yuan, Michael Slootsky, Rui Liu, Steven E. Molesa, Sunggu Kang, Wendi Chang, Chun-Ming Tang, Cheng Chen, Ivan Knez, Enkhamgalan Dorjgotov, Giovanni Carbone, Graham B. Myhre, Jungmin Lee
  • Publication number: 20220005894
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Patent number: 11145700
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 12, 2021
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Publication number: 20210057670
    Abstract: Pixels in an organic light-emitting diode (OLED) display may be microcavity OLED pixels having optical cavities. The optical cavities may be defined by a partially transparent cathode layer and a reflective anode structure. The anode of the pixels may include both the reflective anode structure and a supplemental anode that is transparent and that is used to tune the thickness of the optical cavity for each pixel. Organic light-emitting diode layers may be formed over the pixels and may have a uniform thickness in each pixel in the display. Pixels may have a conductive spacer between a transparent anode portion and a reflective anode portion, without an intervening dielectric layer. The conductive spacer may be formed from a material such as titanium nitride that is compatible with both anode portions. The transparent anode portions may have varying thicknesses to control the thickness of the optical cavities of the pixels.
    Type: Application
    Filed: May 29, 2020
    Publication date: February 25, 2021
    Inventors: Gloria Wong, Jaein Choi, Sunggu Kang, Hairong Tang, Xiaodan Zhu, Wendi Chang, Kanuo C. Kustra, Rui Liu, Cheng Chen, Teruo Sasagawa, Wookyung Bae
  • Publication number: 20200312930
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
    Type: Application
    Filed: January 16, 2020
    Publication date: October 1, 2020
    Inventors: Jaein Choi, Hairong Tang, Gloria Wong, Sunggu Kang, Younggu Lee, Gwanwoo Park, Chun-Yao Huang, Andrew Lin, Cheuk Chi Lo, Enkhamgalan Dorjgotov, Michael Slootsky, Rui Liu, Wendi Chang, Cheng Chen
  • Publication number: 20200066815
    Abstract: An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have a steep sidewall, a sidewall with an undercut, or a sidewall surface with a plurality of curves to disrupt continuity of the OLED layers. A control gate that is coupled to a bias voltage and covered by gate dielectric may be used to form an organic thin-film transistor that shuts the leakage current channel between adjacent anodes on the display.
    Type: Application
    Filed: April 27, 2018
    Publication date: February 27, 2020
    Inventors: Jaein Choi, Andrew Lin, Cheuk Chi Lo, Chun-Yao Huang, Gloria Wong, Hairong Tang, Hitoshi Yamamoto, James E. Pedder, KiBeom Kim, Kwang Ohk Cheon, Lei Yuan, Michael Slootsky, Rui Liu, Steven E. Molesa, Sunggu Kang, Wendi Chang, Chun-Ming Tang, Cheng Chen, Ivan Knez, Enkhamgalan Dorjgotov, Giovanni Carbone, Graham B. Myhre, Jungmin Lee
  • Publication number: 20180205135
    Abstract: A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 19, 2018
    Applicant: Thin Film Electronics ASA
    Inventors: Mao TAKASHIMA, Aditi CHANDRA, Somnath MUKHERJEE, Gloria WONG, Khanh VAN TU, Joey LI, Anton POPIOLEK, Arvind KAMATH
  • Patent number: 9947988
    Abstract: A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: April 17, 2018
    Assignee: Thin Film Electronics ASA
    Inventors: Mao Takashima, Aditi Chandra, Somnath Mukherjee, Gloria Wong, Khanh Van Tu, Joey Li, Anton Popiolek, Arvind Kamath
  • Publication number: 20170040665
    Abstract: A wireless communication device and methods of manufacturing and using the same are disclosed. The wireless communication device includes a substrate with an antenna and/or inductor thereon, a patterned ferrite layer overlapping the antenna and/or inductor, and a capacitor electrically connected to the antenna and/or inductor. The wireless communication device may further include an integrated circuit including a receiver configured to convert a first wireless signal to an electric signal and a transmitter configured to generate a second wireless signal, the antenna being configured to receive the first wireless signal and transmit or broadcast the second wireless signal. The patterned ferrite layer advantageously mitigates the deleterious effect of metal objects in proximity to a reader and/or transponder magnetically coupled to the antenna.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 9, 2017
    Applicant: Thin Film Electronics ASA
    Inventors: Mao TAKASHIMA, Aditi CHANDRA, Somnath MUKHERJEE, Gloria WONG, Khanh VAN TU, Joey LI, Anton POPIOLEK, Arvind KAMATH
  • Patent number: 9183973
    Abstract: Devices on a diffusion barrier coated metal substrates, and methods of making the same are disclosed. The devices include a metal substrate, a diffusion barrier layer on the metal substrate, one or more insulator layers on the diffusion barrier layer, and an antenna and/or inductor on the one or more insulator layer(s). The method includes forming a diffusion barrier layer on the metal substrate, forming one or more insulator layers on the diffusion barrier layer; and forming an antenna and/or inductor on an uppermost one of the insulator layer(s). The antenna and/or inductor is electrically connected to at least one of the diffusion barrier layer and/or the metal substrate. Such diffusion barrier coated substrates prevent diffusion of metal atoms from the metal substrate into device layers formed thereon.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: November 10, 2015
    Assignee: Thin Film Electronics ASA
    Inventors: Arvind Kamath, Michael Kocsis, Kevin McCarthy, Gloria Wong, Jiang Li
  • Publication number: 20130243940
    Abstract: Devices on a diffusion barrier coated metal substrates, and methods of making the same are disclosed. The devices include a metal substrate, a diffusion barrier layer on the metal substrate, one or more insulator layers on the diffusion barrier layer, and an antenna and/or inductor on the one or more insulator layer(s). The method includes forming a diffusion barrier layer on the metal substrate, forming one or more insulator layers on the diffusion barrier layer; and forming an antenna and/or inductor on an uppermost one of the insulator layer(s). The antenna and/or inductor is electrically connected to at least one of the diffusion barrier layer and/or the metal substrate. Such diffusion barrier coated substrates prevent diffusion of metal atoms from the metal substrate into device layers formed thereon.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 19, 2013
    Inventors: Arvind KAMATH, Michael KOCSIS, Kevin MCCARTHY, Gloria WONG, Jiang LI