Patents by Inventor Glynn R Williams

Glynn R Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7240730
    Abstract: A system to determine the mixture of fluids in the deviated section of a wellbore comprising at least one distributed temperature sensor adapted to measure the temperature profile along at least two levels of a vertical axis of the deviated section. Each distributed temperature sensor can be a fiber optic line functionally connected to a light source that may utilize optical time domain reflectometry to measure the temperature profile along the length of the fiber line. The temperature profiles at different positions along the vertical axis of the deviated wellbore enables the determination of the cross-sectional distribution of fluids flowing along the deviated section. Together with the fluid velocity of each of the fluids flowing along the deviated section, the cross-sectional fluid distribution enables the calculation of the flow rates of each of the fluids. The system may also be used in conjunction with a pipeline, such as a subsea pipeline, to determine the flow rates of fluids flowing therethrough.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: July 10, 2007
    Assignee: Schlumberger Technology Corp.
    Inventors: Glynn R Williams, Kevin J Forbes, Arthur H Hartog, Christian Koeniger, George A Brown
  • Patent number: 7021388
    Abstract: In a hydrocarbon production well, a control processor 32 selectively sends light to each of one or more gas lift valves 28 to cause injection of an injection fluid (such as nitrogen gas) from a pressurised annulus 22 into a production fluid (hydrocarbon) in production 18 tubing, and/or to each of one or more inlet valves 60, to control the rate of flow of the hydrocarbon (oil). The control processor 32 receives feedback data from sensors 48 54 50 66 near to each gas lift 28 or inlet 60 valve and otherwise provided in the well bore which measure pressure, temperature or flow rate. The sensors communicate by sensor fibre optic lines 42 which run in the well bore 10. The control processor 32 sends control signals by operating a laser light source to selectively to send laser light to each valve 28 60 through valve operating light fibres 36 which also run through the well bore 10.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: April 4, 2006
    Inventor: Glynn R. Williams
  • Patent number: 6997256
    Abstract: A system to determine the mixture of fluids in the deviated section of a wellbore comprising at least one distributed temperature sensor adapted to measure the temperature profile along at least two levels of a vertical axis of the deviated section. Each distributed temperature sensor can be a fiber optic line functionally connected to a light source that may utilize optical time domain reflectometry to measure the temperature profile along the length of the fiber line. The temperature profiles at different positions along the vertical axis of the deviated wellbore enables the determination of the cross-sectional distribution of fluids flowing along the deviated section. Together with the fluid velocity of each of the fluids flowing along the deviated section, the cross-sectional fluid distribution enables the calculation of the flow rates of each of the fluids. The system may also be used in conjunction with a pipeline, such as a subsea pipeline, to determine the flow rates of fluids flowing therethrough.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: February 14, 2006
    Assignee: Sensor Highway Limited
    Inventors: Glynn R Williams, Kevin J Forbes, Arthur H Hartog, Christian Koeniger, George A Brown
  • Patent number: 6769805
    Abstract: A heater cable is deployed in a well bore to elevate the temperature of the wellbore above the temperature of the surrounding fluid and the formation. One or more fiber optic strings are included in or carried by the heater cable which is placed along a desired length of the wellbore. At least one fiber optic string measures temperature of the heater cable at a plurality of spaced apart locations. Another string is utilized to determine the temperature of the wellbore. The heater cable is heated above the temperature of the well bore. The fluid flowing from the formation to the wellbore lowers the temperature of the cable at the inflow locations. The fiber optic string provides measurements of the temperature along the heater cable. The fluid flow is determined from the temperature profile of the heater cable provided by the fiber optic sensors.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: August 3, 2004
    Assignee: Sensor Highway Limited
    Inventors: Glynn R Williams, David H Neuroth, Larry V Dalrymple
  • Publication number: 20040112596
    Abstract: A system to determine the mixture of fluids in the deviated section of a wellbore comprising at least one distributed temperature sensor adapted to measure the temperature profile along at least two levels of a vertical axis of the deviated section. Each distributed temperature sensor can be a fiber optic line functionally connected to a light source that may utilize optical time domain reflectometry to measure the temperature profile along the length of the fiber line. The temperature profiles at different positions along the vertical axis of the deviated wellbore enables the determination of the cross-sectional distribution of fluids flowing along the deviated section. Together with the fluid velocity of each of the fluids flowing along the deviated section, the cross-sectional fluid distribution enables the calculation of the flow rates of each of the fluids. The system may also be used in conjunction with a pipeline, such as a subsea pipeline, to determine the flow rates of fluids flowing therethrough.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 17, 2004
    Inventors: Glynn R. Williams, Kevin J. Forbes, Arthur H. Hartog, Christian Koeniger, George A. Brown
  • Publication number: 20040108118
    Abstract: In a hydrocarbon production well, a control processor 32 selectively sends light to each of one or more gas lift valves 28 to cause injection of an injection fluid (such as nitrogen gas) from a pressurised annulus 22 into a production fluid (hydrocarbon) in production 18 tubing, and/or to each of one or more inlet valves 60, to control the rate of flow of the hydrocarbon (oil). The control processor 32 receives feedback data from sensors 48 54 50 66 near to each gas lift 28 or inlet 60 valve and otherwise provided in the well bore which measure pressure, temperature or flow rate. The sensors communicate by sensor fibre optic lines 42 which run in the well bore 10. The control processor 32 sends control signals by operating a laser light source to selectively to send laser light to each valve 28 60 through valve operating light fibres 36 which also run through the well bore 10.
    Type: Application
    Filed: September 24, 2003
    Publication date: June 10, 2004
    Inventor: Glynn R. Williams
  • Publication number: 20030122535
    Abstract: A heater cable is deployed in a well bore to elevate the temperature of the wellbore above the temperature of the surrounding fluid and the formation. One or more fiber optic strings are included in or carried by the heater cable which is placed along a desired length of the wellbore. At least one fiber optic string measures temperature of the heater cable at a plurality of spaced apart locations. Another string is utilized to determine the temperature of the wellbore. The heater cable is heated above the temperature of the well bore. The fluid flowing from the formation to the wellbore lowers the temperature of the cable at the inflow locations. The fiber optic string provides measurements of the temperature along the heater cable. The fluid flow is determined from the temperature profile of the heater cable provided by the fiber optic sensors.
    Type: Application
    Filed: December 17, 2002
    Publication date: July 3, 2003
    Inventors: Glynn R. Williams, David H. Neuroth, Larry V. Dalrymple
  • Patent number: 6497279
    Abstract: The present invention provides a heater cable (10) that may be deployed in a wellbore to elevate the temperature of the wellbore above the temperature of the surrounding fluid and the formation. One or more fiber optic strings are included in or are carried by the heater cable. The heater cable carrying the fiber optics is placed along the desired length of the wellbore. At least one fiber optic string measures temperature of the heater cable at a plurality of spaced apart locations. Another string may be utilized to determine the temperature of the wellbore. In one aspect of this invention, the heater cable is heated above the temperature of the wellbore. The fluid flowing from the formation to the wellbore lowers the temperature of the cable at the inflow locations. The fiber optic string provides measurements of the temperature along the heater cable. The fluid flow is determined from the temperature profile of the heater cable provided by the fiber optic sensors.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: December 24, 2002
    Assignee: Sensor Highway Limited
    Inventors: Glynn R Williams, David H Neuroth, Larry V Dalrymple