Patents by Inventor Go KAWATA

Go KAWATA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10064585
    Abstract: According to an embodiment, a photon detecting element includes one or more avalanche photodiodes and a circuit. The circuit is connected between cathodes of the one or more avalanche photodiodes and an external power source. The circuit is configured in which a first temperature coefficient representing variation of a setting potential with respect to temperature variation when constant-current driving is performed so that electrical potential of the cathodes becomes equal to the setting potential is substantially the same as a second temperature coefficient representing variation of breakdown voltage of the one or more avalanche photodiodes with respect to temperature variation.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: September 4, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shunsuke Kimura, Hiroshi Ota, Go Kawata, Hideyuki Funaki, Rei Hasegawa
  • Patent number: 10041830
    Abstract: A radiation detection apparatus according to an embodiment includes a radiation detector that detects radiation; a first measurer that measures energy of the radiation from the radiation detected by the radiation detector; and a second measurer that measures the number of times that the radiation detector detects the radiation.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 7, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shunsuke Kimura, Go Kawata, Hideyuki Funaki, Masanori Furuta, Hirokatsu Shirahama, Tetsuro Itakura
  • Publication number: 20180206804
    Abstract: A detection apparatus according to an embodiment includes first detectors, a first electrode, second detectors and a second electrode. The first detectors detect a photon. The first electrode is electrically connected to each of the first detectors. The second detectors detect a photon. The second electrode is electrically connected to each of the second detectors. The number of first detectors is less than the number of second detectors.
    Type: Application
    Filed: August 23, 2017
    Publication date: July 26, 2018
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Go KAWATA, Keita Sasaki, Rei Hasegawa
  • Patent number: 10007005
    Abstract: A method of manufacturing a radiation detector according to an embodiment includes: forming a plurality of scintillator array columns, each of the scintillator array columns being formed by preparing a scintillator member that a thickness being smaller than a length and a width, the scintillator member having a first face, a second face, a third face, and a fourth face, and being cut from the third face along the second direction to form at least a groove that penetrates from the first face to the second face but does not reach the fourth face to have an uncut portion near the fourth face; stacking the scintillator array columns in the first direction with a space between each of adjacent two scintillator array columns, and filling a spacer material into the space; inserting a reflector into each space and each groove; and cutting the uncut portion.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: June 26, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuharu Hosono, Kazunori Miyazaki, Go Kawata, Mitsuyoshi Kobayashi, Rei Hasegawa
  • Patent number: 9952334
    Abstract: A pulse detection circuit according to an embodiment includes a conversion circuit, a delay circuit, first and second comparators, a latch, and a generation circuit. The conversion circuit converts an input signal into a thermometer code signal. The delay circuit outputs a delay signal being the thermometer code signal delayed by a predetermined delay time. The first comparator (The second comparator) compares the thermometer code signal with the delay signal and outputs an increase signal (a decrease signal) indicating whether the input signal is larger (smaller) than the input signal before the delay time. Based on the increase signal and the decrease signal, the latch outputs an increase-decrease signal indicating whether the input signal is increasing or decreasing. Based on the thermometer code signal and the increase-decrease signal, the generation circuit generates a pulse detection signal and a pileup detection signal.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: April 24, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hirokatsu Shirahama, Tetsuro Itakura, Masanori Furuta, Shunsuke Kimura, Go Kawata, Hideyuki Funaki
  • Patent number: 9945962
    Abstract: According to an embodiment, a signal processor includes an integrator, a differentiator, a zero cross detector, a pile-up detector, an event interval detector, a counter, and a creator. The integrator is configured to calculate charge of current from a photoelectric converter for an incident radiation. The differentiator is configured to calculate a differential value of the current. The zero cross detector is configured to detect a zero cross of the differential value. The pile-up detector is configured to detect pile-up of the current based on the zero cross. The event interval detector is configured to detect, based on the zero cross and pile-up, an event interval of the radiation entering. The counter is configured to count, based on the charge and pile-up, the respective numbers of events according to the charge and the event interval. The creator is configured to create histograms for the numbers of events.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: April 17, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Funaki, Shunsuke Kimura, Go Kawata, Tetsuro Itakura, Masanori Furuta
  • Patent number: 9921320
    Abstract: According to an embodiment, an apparatus includes a first detector, a second detector, and a controller. The first detector is configured to detect first radiation at a first frequency within a first time by at least a first radiation detecting element and a second radiation detecting element that are positioned near to each other, and output a first signal. The second detector is configured to detect second radiation at a second frequency less than the first frequency within a second time by at least the first radiation detecting element and the second radiation detecting element, and output a second signal. The controller is configured to generate a third signal representing a difference between the first signal and the second signal, and calculate energy using the third signal.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: March 20, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Go Kawata, Shunsuke Kimura, Yasuharu Hosono, Rei Hasegawa, Toshiyuki Ono
  • Patent number: 9877689
    Abstract: According to an embodiment, a detection device includes a plurality of first detectors and a plurality of second detectors. The plurality of first detectors are arranged on a two-dimensional plane. Each first detector is configured to detect photons in a photon-counting manner. The plurality of second detectors are arranged on the two-dimensional plane. Each second detector is configured to detect photons in a charge-integrating manner.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: January 30, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Go Kawata, Shunsuke Kimura, Rei Hasegawa
  • Patent number: 9864079
    Abstract: According to an embodiment, a radiation detection device includes a scintillator layer, a plurality of detectors, a setting unit, an identifier, and a corrector. The scintillator layer is configured to convert radiation into scintillation light. The detectors are arranged along a first surface facing the scintillator layer to detect light. The setting unit is configured to set one of the detectors as a first detector to be corrected. The identifier is configured to identify, out of the detectors, a second detector that detects a synchronization signal synchronizing with a first signal detected by the first detector. The corrector is configured to correct an energy spectrum of light detected by the first detector on the basis of a second signal serving as the synchronization signal in signals detected by the second detector, the first signal, and characteristic X-ray energy of a scintillator raw material constituting the scintillator layer.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: January 9, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiko Fujii, Go Kawata, Yasuharu Hosono, Kazunori Miyazaki, Rei Hasegawa
  • Patent number: 9864068
    Abstract: According to an embodiment, a circuit includes a shunt and a controller. The shunt shunts input current into a plurality of current paths. The controller controls a gain of current inputted to the shunt by combining the current that is shunted into the current paths by the shunt in combination corresponding to a first signal from the outside or changing a shunt ratio with which the shunt shunts the current into the current paths corresponding to the first signal.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: January 9, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shunsuke Kimura, Hirokatsu Shirahama, Go Kawata, Masanori Furuta, Hideyuki Funaki, Tetsuro Itakura
  • Patent number: 9787284
    Abstract: A waveform shaping filter according to one embodiment includes a first resistor, a first transistor, a first capacitor, and a first amplifier. The first resistor includes one end to which a signal current is input and the other end. The first transistor includes a first terminal connected to the other end of the first resistor, a second terminal, and a control terminal. The first capacitor includes one end connected to the other end of the first resistor and the other end. The first amplifier includes an input terminal connected to the one end of the first resistor and an output terminal connected to the control terminal of the first transistor.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: October 10, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuro Itakura, Masanori Furuta, Shunsuke Kimura, Hideyuki Funaki, Go Kawata, Hirokatsu Shirahama
  • Publication number: 20170248464
    Abstract: A radiation detection apparatus according to an embodiment includes a radiation detector that detects radiation; a first measurer that measures energy of the radiation from the radiation detected by the radiation detector; and a second measurer that measures the number of times that the radiation detector detects the radiation.
    Type: Application
    Filed: September 15, 2016
    Publication date: August 31, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shunsuke KIMURA, Go KAWATA, Hideyuki FUNAKI, Masanori FURUTA, Hirokatsu SHIRAHAMA, Tetsuro ITAKURA
  • Patent number: 9647677
    Abstract: An integrator according to an embodiment includes first and second nodes, first to fifth switches, first and second main integration capacitors, and a first subsidiary integration capacitor. The first (second, third, fourth, fifth) switch has one end connected to a first (third, first, fourth, first) node and the other end connected to a third (second, fourth, second, fifth) node. The first main integration capacitor has one end connected to the third node and the other end connected to a standard voltage line. The second main integration capacitor has one end connected to the fourth node and the other end connected to the standard voltage line. The first subsidiary integration capacitor that has one end connected to the fifth node and the other end connected to the standard voltage line.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 9, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hirokatsu Shirahama, Shunsuke Kimura, Tetsuro Itakura, Masanori Furuta, Hideyuki Funaki, Go Kawata
  • Publication number: 20170086762
    Abstract: According to an embodiment, a detection device includes a plurality of first detectors and a plurality of second detectors. The plurality of first detectors are arranged on a two-dimensional plane. Each first detector is configured to detect photons in a photon-counting manner. The plurality of second detectors are arranged on the two-dimensional plane. Each second detector is configured to detect photons in a charge-integrating manner.
    Type: Application
    Filed: September 12, 2016
    Publication date: March 30, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Go KAWATA, Shunsuke Kimura, Rei Hasegawa
  • Patent number: 9543961
    Abstract: A current detection circuit according to one embodiment includes a low-pass filter, a voltage-to-current converter circuit, and a comparator. The low-pass filter has a first terminal connected to a signal input terminal to which a signal current is input. The voltage-to-current converter circuit has a first terminal connected to a second terminal of the low-pass filter and has a second terminal connected to the signal input terminal. The comparator has a first input terminal and a second input terminal and outputs a signal according to a difference between a signal input through the first input terminal and a signal input through the second input terminal, the first input terminal being connected to the second terminal of the low-pass filter, and the second input terminal being connected to the second terminal of the voltage-to-current converter circuit.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: January 10, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tetsuro Itakura, Masanori Furuta, Shunsuke Kimura, Hideyuki Funaki, Go Kawata
  • Publication number: 20170005667
    Abstract: An integrator according to an embodiment includes first and second nodes, first to fifth switches, first and second main integration capacitors, and a first subsidiary integration capacitor. The first (second, third, fourth, fifth) switch has one end connected to a first (third, first, fourth, first) node and the other end connected to a third (second, fourth, second, fifth) node. The first main integration capacitor has one end connected to the third node and the other end connected to a standard voltage line. The second main integration capacitor has one end connected to the fourth node and the other end connected to the standard voltage line. The first subsidiary integration capacitor that has one end connected to the fifth node and the other end connected to the standard voltage line.
    Type: Application
    Filed: April 26, 2016
    Publication date: January 5, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hirokatsu SHIRAHAMA, Shunsuke KIMURA, Tetsuro ITAKURA, Masanori FURUTA, Hideyuki FUNAKI, Go KAWATA
  • Publication number: 20160380020
    Abstract: According to an embodiment, a photodetector includes a photo detection layer, light conversion members, and a first member. The photo detection layer includes, on a light incident surface, plural pixel regions and a surrounding region. The pixel region holds a photo detection element to detect the light. The surrounding region is a region other than the pixel regions on the light incident surface. The light conversion members are arranged to oppose the pixel regions in the photo detection layer and convert radiation to the light. Each light conversion member includes a bottom surface opposing the pixel region in the photo detection layer, a top surface opposing the bottom surface, and a lateral surface connecting the bottom and top surfaces. The first member is disposed on a portion of the surrounding region on the light incident surface and covers a portion of the lateral surface of the light conversion member.
    Type: Application
    Filed: September 6, 2016
    Publication date: December 29, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yasuharu HOSONO, Kazuhiro SUZUKI, Hitoshi YAGI, Kazunori MIYAZAKI, GO KAWATA, Keita SASAKI, Rei HASEGAWA
  • Publication number: 20160377741
    Abstract: According to an embodiment, a signal processor includes an integrator, a differentiator, a zero cross detector, a pile-up detector, an event interval detector, a counter, and a creator. The integrator is configured to calculate charge of current from a photoelectric converter for an incident radiation. The differentiator is configured to calculate a differential value of the current. The zero cross detector is configured to detect a zero cross of the differential value. The pile-up detector is configured to detect pile-up of the current based on the zero cross. The event interval detector is configured to detect, based on the zero cross and pile-up, an event interval of the radiation entering. The counter is configured to count, based on the charge and pile-up, the respective numbers of events according to the charge and the event interval. The creator is configured to create histograms for the numbers of events.
    Type: Application
    Filed: September 8, 2016
    Publication date: December 29, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki FUNAKI, Shunsuke KIMURA, Go KAWATA, Tetsuro ITAKURA, Masanori FURUTA
  • Publication number: 20160374629
    Abstract: According to an embodiment, an apparatus includes a reference calculator, a peak calculator, a coefficient calculator, and a calibrator. The reference calculator is configured to calculate, as a first value, a most frequent electrical signal level from a first set of electrical signal levels output from the respective pixels of a detector for radiation. The peak calculator is configured to calculate, as a second value, a peak level of radiation energy of a characteristic X-ray, based on a relation between energy and intensity of radiation obtained from the first set. The coefficient calculator is configured to calculate a coefficient by dividing a difference between the first and second values by the peak level. The calibrator is configured to multiply an electrical signal level of each pixel by the coefficient and add the first value to the multiplication to calibrate a relation between detection output and incident radiation of the detector.
    Type: Application
    Filed: September 8, 2016
    Publication date: December 29, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Go KAWATA, Yasuharu Hosono, Rei Hasegawa
  • Publication number: 20160370475
    Abstract: According to an embodiment, a radiation measuring apparatus includes a detector, comparators, a threshold controller, counters, and a generator. The detector includes plural detecting elements each configured to convert energy of incident radiation into a first electrical signal. The comparators correspond to the respective detecting elements, each comparator being configured to output a second electrical signal when a level of the corresponding first electrical signal is not less than a threshold. The threshold controller is configured to supply a first value as the threshold to the respective comparators at a first time, and supply a second value as the threshold to the respective comparators at a second time. The counters correspond to the respective comparators, each counter being configured to count the corresponding second electrical signal. The generator is configured to generate a pulse height frequency distribution of the radiation by using counts of the counters.
    Type: Application
    Filed: September 6, 2016
    Publication date: December 22, 2016
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Go KAWATA, Shunsuke Kimura, Hideyuki Funaki, Masanori Furuta, Tetsuro Itakura