Patents by Inventor Godfrey Sikha

Godfrey Sikha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180277864
    Abstract: High performance flow batteries, based on alkaline zinc/ferro-ferricyanide rechargeable (“ZnFe”) and similar flow batteries, may include one or more of the following improvements. First, the battery design has a cell stack comprising a low resistance positive electrode in at least one positive half cell and a low resistance negative electrode in at least one negative half cell, where the positive electrode and negative electrode resistances are selected for uniform high current density across a region of the cell stack. Second, a flow of electrolyte, such as zinc species in the ZnFe battery, with a high level of mixing through at least one negative half cell in a Zn deposition region proximate a deposition surface where the electrolyte close to the deposition surface has sufficiently high zinc concentration for deposition rates on the deposition surface that sustain the uniform high current density.
    Type: Application
    Filed: May 30, 2018
    Publication date: September 27, 2018
    Inventors: Joseph Grover GORDON, II, Alan J. GOTCHER, Godfrey SIKHA, Gregory J. WILSON
  • Patent number: 10008729
    Abstract: High performance flow batteries, based on alkaline zinc/ferro-ferricyanide rechargeable (“ZnFe”) and similar flow batteries, may include one or more of the following improvements. First, the battery design has a cell stack comprising a low resistance positive electrode in at least one positive half cell and a low resistance negative electrode in at least one negative half cell, where the positive electrode and negative electrode resistances are selected for uniform high current density across a region of the cell stack. Second, a flow of electrolyte, such as zinc species in the ZnFe battery, with a high level of mixing through at least one negative half cell in a Zn deposition region proximate a deposition surface where the electrolyte close to the deposition surface has sufficiently high zinc concentration for deposition rates on the deposition surface that sustain the uniform high current density.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: June 26, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Grover Gordon, II, Alan J. Gotcher, Godfrey Sikha, Gregory J. Wilson
  • Publication number: 20160013480
    Abstract: Implementations of the present invention relate generally to high-capacity energy storage devices and methods and apparatus for fabricating high-capacity energy storage devices. In one implementation, a method for forming a multi-layer cathode structure is provided. The method comprises providing a conductive substrate, depositing a first slurry mixture comprising a cathodically active material to form a first cathode material layer over the conductive substrate, depositing a second slurry mixture comprising a cathodically active material to form a second cathode material layer over the first cathode material layer, and compressing the as-deposited first cathode material layer and the second cathode material layer to achieve a desired porosity.
    Type: Application
    Filed: March 5, 2014
    Publication date: January 14, 2016
    Inventors: Godfrey SIKHA, Subramanya P. HERLE, Connie P. WANG, Zheng WANG, Dongli ZENG, Fei C. WANG, Mahendra C. ORILALL
  • Publication number: 20140363707
    Abstract: High performance flow batteries, based on alkaline zinc/ferro-ferricyanide rechargeable (“ZnFe”) and similar flow batteries, may include one or more of the following improvements. First, the battery design has a cell stack comprising a low resistance positive electrode in at least one positive half cell and a low resistance negative electrode in at least one negative half cell, where the positive electrode and negative electrode resistances are selected for uniform high current density across a region of the cell stack. Second, a flow of electrolyte, such as zinc species in the ZnFe battery, with a high level of mixing through at least one negative half cell in a Zn deposition region proximate a deposition surface where the electrolyte close to the deposition surface has sufficiently high zinc concentration for deposition rates on the deposition surface that sustain the uniform high current density.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Joseph Grover GORDON, II, Alan J. GOTCHER, Godfrey SIKHA, Gregory J. WILSON
  • Publication number: 20110244277
    Abstract: High performance flow batteries, based on alkaline zinc/ferro-ferricyanide rechargeable (“ZnFe”) and similar flow batteries, may include one or more of the following improvements. First, the battery design has a cell stack comprising a low resistance positive electrode in at least one positive half cell and a low resistance negative electrode in at least one negative half cell, where the positive electrode and negative electrode resistances are selected for uniform high current density across a region of the cell stack. Second, a flow of electrolyte, such as zinc species in the ZnFe battery, with a high level of mixing through at least one negative half cell in a Zn deposition region proximate a deposition surface where the electrolyte close to the deposition surface has sufficiently high zinc concentration for deposition rates on the deposition surface that sustain the uniform high current density.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Joseph Grover Gordon, II, Alan J. Gotcher, Godfrey Sikha, Gregory J. Wilson
  • Publication number: 20110168550
    Abstract: Embodiments described herein provide methods and systems for manufacturing faster charging, higher capacity energy storage devices that are smaller, lighter, and can be more cost effectively manufactured at a higher production rate. In one embodiment, a graded cathode structure is provided. The graded cathode structure comprises a conductive substrate, a first porous layer comprising a first cathodically active material having a first porosity formed on the conductive substrate, and a second porous layer comprising a second cathodically active material having a second porosity formed on the first porous layer. In certain embodiments, the first porosity is greater than the second porosity. In certain embodiments, the first porosity is less than the second porosity.
    Type: Application
    Filed: November 23, 2010
    Publication date: July 14, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Connie P. Wang, Sergey D. Lopatin, Robert Z. Bachrach, Godfrey Sikha