Patents by Inventor Golam Kibria

Golam Kibria has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11613819
    Abstract: An abrupt interface electroreduction catalyst includes a porous gas diffusion layer and a catalyst layer providing a sharp reaction interface. The electroreduction catalyst can be used for converting CO2 into a target product such as ethylene. The porous gas diffusion layer can be hydrophobic and configured for contacting gas-phase CO2 while the catalyst layer is disposed on and covers a reaction interface side of the porous gas diffusion layer. The catalyst layer has another side contacting an electrolyte and can be hydrophilic, composed a metal such as Cu and is sufficiently thin to prevent diffusion limitations of the reactant in the electrolyte and enhance selectivity for the target product. The electroreduction catalyst can be made by vapor deposition methods and can be used for electrochemical production of ethylene in reaction system.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: March 28, 2023
    Inventors: Cao-Thang Dinh, Thomas Burdyny, Md Golam Kibria, Ali Seifitokaldani, David Sinton, Edward Sargent
  • Patent number: 11484861
    Abstract: InGaN offers a route to high efficiency overall water splitting under one-step photo-excitation. Further, the chemical stability of metal-nitrides supports their use as an alternative photocatalyst. However, the efficiency of overall water splitting using InGaN and other visible light responsive photocatalysts has remained extremely low despite prior art work addressing optical absorption through band gap engineering. Within this prior art the detrimental effects of unbalanced charge carrier extraction/collection on the efficiency of the four electron-hole water splitting reaction have remained largely unaddressed. To address this growth processes are presented that allow for controlled adjustment and establishment of the appropriate Fermi level and/or band bending in order to allow the photochemical water splitting to proceed at high rate and high efficiency. Beneficially, establishing such material surface charge properties also reduces photo-corrosion and instability under harsh photocatalysis conditions.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: November 1, 2022
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Zetian Mi, Md Golam Kibria, Mohammad Faqrul Alam Chowdhury
  • Patent number: 10874610
    Abstract: This invention is related to use of exosomes for biomarker analysis for early detecting and characterizing of disease progression of cancer. Further, the invention provides bioengineered exosomes for use in methods of targeting and treating cancer.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: December 29, 2020
    Assignees: Northwestern University, Case Western Reserve University
    Inventors: Huiping Liu, Erika K. Ramos, Nurmaa K. Dashzeveg, Golam Kibria
  • Publication number: 20200156041
    Abstract: InGaN offers a route to high efficiency overall water splitting under one-step photo-excitation. Further, the chemical stability of metal-nitrides supports their use as an alternative photocatalyst. However, the efficiency of overall water splitting using InGaN and other visible light responsive photocatalysts has remained extremely low despite prior art work addressing optical absorption through band gap engineering. Within this prior art the detrimental effects of unbalanced charge carrier extraction/collection on the efficiency of the four electron-hole water splitting reaction have remained largely unaddressed. To address this growth processes are presented that allow for controlled adjustment and establishment of the appropriate Fermi level and/or band bending in order to allow the photochemical water splitting to proceed at high rate and high efficiency. Beneficially, establishing such material surface charge properties also reduces photo-corrosion and instability under harsh photocatalysis conditions.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Inventors: Zetian MI, Md Golam KIBRIA, Mohammad Faqrul Alam CHOWDHURY
  • Publication number: 20200141015
    Abstract: An abrupt interface electroreduction catalyst includes a porous gas diffusion layer and a catalyst layer providing a sharp reaction interface. The electroreduction catalyst can be used for converting CO2 into a target product such as ethylene. The porous gas diffusion layer can be hydrophobic and configured for contacting gas-phase CO2 while the catalyst layer is disposed on and covers a reaction interface side of the porous gas diffusion layer. The catalyst layer has another side contacting an electrolyte and can be hydrophilic, composed a metal such as Cu and is sufficiently thin to prevent diffusion limitations of the reactant in the electrolyte and enhance selectivity for the target product. The electroreduction catalyst can be made by vapor deposition methods and can be used for electrochemical production of ethylene in reaction system.
    Type: Application
    Filed: June 21, 2018
    Publication date: May 7, 2020
    Applicant: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Cao-Thang DINH, Thomas BURDYNY, Md Golam KIBRIA, Ali SEIFITOKALDANI, David SINTON, Edward SARGENT
  • Patent number: 10576447
    Abstract: InGaN offers a route to high efficiency overall water splitting under one-step photo-excitation. Further, the chemical stability of metal-nitrides supports their use as an alternative photocatalyst. However, the efficiency of overall water splitting using InGaN and other visible light responsive photocatalysts has remained extremely low despite prior art work addressing optical absorption through band gap engineering. Within this prior art the detrimental effects of unbalanced charge carrier extraction/collection on the efficiency of the four electron-hole water splitting reaction have remained largely unaddressed. To address this growth processes are presented that allow for controlled adjustment and establishment of the appropriate Fermi level and/or band bending in order to allow the photochemical water splitting to proceed at high rate and high efficiency. Beneficially, establishing such material surface charge properties also reduces photo-corrosion and instability under harsh photocatalysis conditions.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: March 3, 2020
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: Zetian Mi, Md Golam Kibria, Mohammad Faqrul Alam Chowdhury
  • Publication number: 20180104187
    Abstract: This invention is related to use of exosomes for biomarker analysis for early detecting and characterizing of disease progression of cancer. Further, the invention provides bioengineered exosomes for use in methods of targeting and treating cancer.
    Type: Application
    Filed: October 19, 2017
    Publication date: April 19, 2018
    Inventors: Huiping Liu, Erika K. Ramos, Nurmaa K. Dashzeveg, Golam Kibria
  • Publication number: 20170216810
    Abstract: InGaN offers a route to high efficiency overall water splitting under one-step photo-excitation. Further, the chemical stability of metal-nitrides supports their use as an alternative photocatalyst. However, the efficiency of overall water splitting using InGaN and other visible light responsive photocatalysts has remained extremely low despite prior art work addressing optical absorption through band gap engineering. Within this prior art the detrimental effects of unbalanced charge carrier extraction/collection on the efficiency of the four electron-hole water splitting reaction have remained largely unaddressed. To address this growth processes are presented that allow for controlled adjustment and establishment of the appropriate Fermi level and/or band bending in order to allow the photochemical water splitting to proceed at high rate and high efficiency. Beneficially, establishing such material surface charge properties also reduces photo-corrosion and instability under harsh photocatalysis conditions.
    Type: Application
    Filed: July 31, 2015
    Publication date: August 3, 2017
    Inventors: Zetian MI, Md Golam KIBRIA, Mohammad Faqrul Alam CHOWDHURY
  • Patent number: 9240516
    Abstract: Amongst the candidates for very high efficiency electronics, solid state light sources, photovoltaics, and photoelectrochemical devices, and photobiological devices are those based upon metal-nitride nanowires. Enhanced nanowire performance typically require heterostructures, quantum dots, etc which requirement that these structures are grown with relatively few defects and in a controllable reproducible manner. Additionally flexibility according to the device design requires that the nanowire at the substrate may be either InN or GaN. Methods of growing relatively defect free nanowires and associated structures for group IIIA-nitrides are presented without the requirement for foreign metal catalysts, overcoming the non-uniform growth of prior art techniques and allowing self-organizing quantum dot, quantum well and quantum dot-in-a-dot structures to be formed.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: January 19, 2016
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Zetian Mi, Md Golam Kibria
  • Publication number: 20150325743
    Abstract: Amongst the candidates for very high efficiency electronics, solid state light sources, photovoltaics, and photoelectrochemical devices, and photobiological devices are those based upon metal-nitride nanowires. Enhanced nanowire performance typically require heterostructures, quantum dots, etc which requirement that these structures are grown with relatively few defects and in a controllable reproducible manner. Additionally flexibility according to the device design requires that the nanowire at the substrate may be either InN or GaN. Methods of growing relatively defect free nanowires and associated structures for group IIIA-nitrides are presented without the requirement for foreign metal catalysts, overcoming the non-uniform growth of prior art techniques and allowing self-organizing quantum dot, quantum well and quantum dot-in-a-dot structures to be formed.
    Type: Application
    Filed: July 14, 2015
    Publication date: November 12, 2015
    Inventors: ZETIAN MI, MD GOLAM KIBRIA
  • Patent number: 9112085
    Abstract: Metal-nitride nanowires are amongst the candidates for very high efficiency electronics, solid state light sources, photovoltaics, photoelectrochemical devices, and photobiological devices. Enhanced performance typically requires heterostructures, quantum dots, etc within structures that are grown with relatively few defects and in a controllable reproducible manner. Additionally device design flexibility requires that the nanowire at the substrate be either InN or GaN. Methods of growing relatively defect free nanowires and associated structures for group IIIA-nitrides are presented without foreign metal catalysts thereby overcoming the non-uniform growth of prior art techniques and allowing self-organizing quantum dot, quantum well and quantum dot-in-a-dot structures to be formed, thereby supporting variety of high efficiency devices.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: August 18, 2015
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Zetian Mi, Md Golam Kibria