Patents by Inventor Gopalakrishnan Juttu
Gopalakrishnan Juttu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7560608Abstract: A method of modifying a zeolite catalyst to increase para-xylene selectivity of the zeolite catalyst in toluene methylation reactions is provided. The method includes forming a slurry of a ZSM-5-type zeolite and an aqueous solution of a phosphorus compound. Water is removed from the slurry to provide a non-steamed, phosphorus treated ZSM-5 zeolite catalyst without deposition of phosphorus onto the catalyst by organophosphorus vapor deposition. The resulting non-steamed, phosphorus treated ZSM-5 zeolite catalyst has a pore volume of from 0.2 ml/g or less and provides greater than 80% para-xylene selectivity of mixed xylenes when used in toluene methylation.Type: GrantFiled: October 22, 2007Date of Patent: July 14, 2009Assignee: Saudi Basic Industries CorporationInventors: Ashim Kumar Ghosh, Gopalakrishnan Juttu, Pamela Harvey, Neeta Kulkarni
-
Publication number: 20090036723Abstract: A method of modifying a zeolite catalyst to increase para-xylene selectivity of the zeolite catalyst in toluene methylation reactions is provided. The method includes forming a slurry of a ZSM-5-type zeolite and an aqueous solution of a phosphorus compound. Water is removed from the slurry to provide a non-steamed, phosphorus treated ZSM-5 zeolite catalyst without deposition of phosphorus onto the catalyst by organophosphorus vapor deposition. The resulting non-steamed, phosphorus treated ZSM-5 zeolite catalyst has a pore volume of from 0.2 ml/g or less and provides greater than 80% para-xylene selectivity of mixed xylenes when used in toluene methylation.Type: ApplicationFiled: October 22, 2007Publication date: February 5, 2009Inventors: Ashim Kumar Ghosh, Gopalakrishnan Juttu, Pamela Harvey, Neeta Kulkarni
-
Patent number: 7285511Abstract: A method of modifying a zeolite catalyst to increase para-xylene selectivity of the zeolite catalyst in toluene methylation reactions is provided. The method includes forming a slurry of a ZSM-5-type zeolite and an aqueous solution of a phosphorus compound. Water is removed from the slurry to provide a non-steamed, phosphorus treated ZSM-5 zeolite catalyst without deposition of phosphorus onto the catalyst by organophosphorus vapor deposition. The resulting non-steamed, phosphorus treated ZSM-5 zeolite catalyst has a pore volume of from 0.2 ml/g or less and provides greater than 80% para-xylene selectivity of mixed xylenes when used in toluene methylation.Type: GrantFiled: April 23, 2004Date of Patent: October 23, 2007Assignee: Saudi Basic Industries CorporationInventors: Ashim Kumar Ghosh, Gopalakrishnan Juttu, Pamela Harvey, Neeta Kulkarni
-
Patent number: 7244869Abstract: A catalyst for use in aromatic alkylation, such as toluene alkylation with methanol, is comprised of a zeolite with pore size from about 5.0 to about 7.0 ? containing a hydrogenating metal. The catalyst may be used in preparing an alkyl aromatic product by providing the catalyst within a reactor. The catalyst may be contacted with an aromatic hydrocarbon and an alkylating agent in the presence of hydrogen under reaction conditions suitable for aromatic alkylation. The catalyst may also be treated to further increase its stability. This is accomplished by heating the hydrogenating metal loaded zeolite catalyst in the presence of a reducing agent prior to use in an aromatic alkylation reaction to a temperature of from about 400° C. to about 500° C. for about 0.5 to about 10 hours.Type: GrantFiled: March 7, 2006Date of Patent: July 17, 2007Assignee: Saudi Basic Industries CorporationInventors: Ashim Kumar Ghosh, Gopalakrishnan Juttu, Pamela Harvey
-
Publication number: 20060155155Abstract: A catalyst for use in aromatic alkylation, such as toluene alkylation with methanol, is comprised of a zeolite with pore size from about 5.0 to about 7.0 ? containing a hydrogenating metal. The catalyst may be used in preparing an alkyl aromatic product by providing the catalyst within a reactor. The catalyst may be contacted with an aromatic hydrocarbon and an alkylating agent in the presence of hydrogen under reaction conditions suitable for aromatic alkylation. The catalyst may also be treated to further increase its stability. This is accomplished by heating the hydrogenating metal loaded zeolite catalyst in the presence of a reducing agent prior to use in an aromatic alkylation reaction to a temperature of from about 400° C. to about 500° C. for about 0.5 to about 10 hours.Type: ApplicationFiled: March 7, 2006Publication date: July 13, 2006Inventors: Ashim Ghosh, Gopalakrishnan Juttu, Pamela Harvey
-
Publication number: 20060140854Abstract: This invention relates to a process for making a germanium-zeolite without using fluoride compounds. The zeolite is preferably a MFI-type structure, most preferably a ZSM-5 MFI zeolite. The germanium-zeolite is synthesized essentially in the absence of fluoride compounds from an aqueous gel containing a silica source, a germanium source, an aluminum source and a structure directing agent in the presence of an acid which does not contain fluorine, such as sulfuric acid, acetic acid, nitric acid, phosphoric acid hydrochloric acid or formic acid.Type: ApplicationFiled: December 27, 2004Publication date: June 29, 2006Inventors: Gopalakrishnan Juttu, Alla Khanmamedova, Scott Mitchell
-
Patent number: 7060644Abstract: A catalyst for use in aromatic alkylation, such as toluene alkylation with methanol, is comprised of a zeolite with pore size from about 5.0 to about 7.0 ? containing a hydrogenating metal. The catalyst may be used in preparing an alkyl aromatic product by providing the catalyst within a reactor. The catalyst may be contacted with an aromatic hydrocarbon and an alkylating agent in the presence of hydrogen under reaction conditions suitable for aromatic alkylation. The catalyst may also be treated to further increase its stability. This is accomplished by heating the hydrogenating metal loaded zeolite catalyst in the presence of a reducing agent prior to use in an aromatic alkylation reaction to a temperature of from about 400° C. to about 500 ° C. for about 0.5 to about 10 hours.Type: GrantFiled: January 8, 2004Date of Patent: June 13, 2006Assignee: Saudi Basic Industries CorporationInventors: Ashim Kumar Ghosh, Gopalakrishnan Juttu, Pamela Harvey
-
Publication number: 20050239635Abstract: A method of modifying a zeolite catalyst to increase para-xylene selectivity of the zeolite catalyst in toluene methylation reactions is provided. The method includes forming a slurry of a ZSM-5-type zeolite and an aqueous solution of a phosphorus compound. Water is removed from the slurry to provide a non-steamed, phosphorus treated ZSM-5 zeolite catalyst without deposition of phosphorus onto the catalyst by organophosphorus vapor deposition. The resulting non-steamed, phosphorus treated ZSM-5 zeolite catalyst has a pore volume of from 0.2 ml/g or less and provides greater than 80% para-xylene selectivity of mixed xylenes when used in toluene methylation.Type: ApplicationFiled: April 23, 2004Publication date: October 27, 2005Inventors: Ashim Ghosh, Gopalakrishnan Juttu, Pamela Harvey, Neeta Kulkarni
-
Publication number: 20050197515Abstract: A catalyst of a gallium zeolite on which platinum (Pt/Ga-ZSM-5) has been deposited may be used for aromatization of alkanes having two to six carbon atoms per molecule, such as ethane, propane, butane, etc., to aromatics, such as benzene, toluene and xylenes (BTX). The gallium zeolite contains gallium and silicon in the framework of the zeolite structure. The zeolite structure may be of MFI, FAU, TON, MFL, VPI, MEL, AEL, AFI, MWW or MOR, but preferably, the zeolite has a MFI structure, more preferably is ZSM-5 MFI zeolite. According to the IUPAC recommendations, an example of the sodium form of the zeolite would be represented as: |Nax·(H2O)z|[GaxSiyO2y+3x/2]?MFI where x=0.1-25; y=60-100; and z=0.1-10. Platinum may be deposited on the gallium zeolite by ion exchange or impregnation.Type: ApplicationFiled: March 3, 2004Publication date: September 8, 2005Inventors: Gopalakrishnan Juttu, Robert Smith
-
Publication number: 20050154242Abstract: A catalyst for use in aromatic alkylation, such as toluene alkylation with methanol, is comprised of a zeolite with pore size from about 5.0 to about 7.0 ? containing a hydrogenating metal. The catalyst may be used in preparing an alkyl aromatic product by providing the catalyst within a reactor. The catalyst may be contacted with an aromatic hydrocarbon and an alkylating agent in the presence of hydrogen under reaction conditions suitable for aromatic alkylation. The catalyst may also be treated to further increase its stability. This is accomplished by heating the hydrogenating metal loaded zeolite catalyst in the presence of a reducing agent prior to use in an aromatic alkylation reaction to a temperature of from about 400° C. to about 500 ° C. for about 0.5 to about 10 hours.Type: ApplicationFiled: January 8, 2004Publication date: July 14, 2005Inventors: Ashim Ghosh, Gopalakrishnan Juttu, Pamela Harvey
-
Publication number: 20050143610Abstract: Aromatization of alkanes having one to four carbon atoms per molecule to aromatics, such as benzene, toluene and xylenes (BTX), uses a catalyst of a crystalline zeolite on which platinum has been deposited, specifically a platinum-containing ZSM-5. A byproduct of the process is a light gas fraction of methane and ethane. The use of a platinum-containing ZSM-5 catalyst in an alkane aromatization process, such as the Cyclar process, suppresses the formation of methane and increases selectivity to BTX. The high content of ethane relative to methane in the light gas fraction allows this process effluent to be a feedstream for a cracker.Type: ApplicationFiled: December 30, 2003Publication date: June 30, 2005Inventors: Scott Mitchell, Gopalakrishnan Juttu, Robert Smith