Patents by Inventor Gopichandra Surnilla

Gopichandra Surnilla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180128149
    Abstract: Methods and systems are provided for operating an exhaust oxygen sensor coupled to an exhaust passage of an internal combustion engine in response to detecting water at the sensor. In one example, a method may include indicating water at an exhaust oxygen sensor positioned in an engine exhaust passage based on a sensor parameter of the exhaust oxygen sensor while operating the exhaust oxygen sensor in a variable voltage (VVs) mode where a reference voltage is adjusted from a lower, first voltage to a higher, second voltage; and adjusting one or more of sensor operation and engine operation based on the indicating water.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Michael McQuillen, Gopichandra Surnilla, Daniel A. Makled, Richard E. Soltis
  • Publication number: 20180128623
    Abstract: Method and apparatus are disclosed for vehicle localization based on wireless local area network nodes. An example disclosed vehicle includes a wireless network controller and a location tracker. In response to losing reception of GPS signals, the location tracker scans for wireless network nodes via the wireless network controller, and when second locations of the wireless network nodes are stored in memory, determines a current location of the vehicle based on a particle filtering technique and received signal strength measurements from the wireless network nodes.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 10, 2018
    Inventors: Gopichandra Surnilla, Daniel Makled, Michael McQuillen, Ali Ahmad Ayoub, Jeremy Ferack
  • Publication number: 20180128194
    Abstract: Methods and systems are provided for adjusting engine operation based on estimated vaporized and condensed portions of water injected during a water injection event. In one example, a method may include injecting an amount of water into the intake manifold in response to engine conditions and inferring vaporized and condensed portions of the injected water based on the injected amount and a change in manifold temperature following the injection. Further, the method may include adjusting water injection and engine operating parameters in response the evaporated and/or condensed portion of water.
    Type: Application
    Filed: January 8, 2018
    Publication date: May 10, 2018
    Inventors: Mohannad Hakeem, Gopichandra Surnilla, Stephen B. Smith
  • Publication number: 20180121763
    Abstract: Method, apparatus and computer readable media are disclosed for object classification adjustment based on vehicle communication. An example vehicle includes a camera to detect an object and an object classifier. The example object classifier is to determine first classification data for the object. The first classification data includes a classification confidence of the object. Also, the example object classifier is to associate second classification data for the object with the first classification data. The second classification data is collected from a second vehicle. Additionally, the example object classifier is to adjust the classification confidence of the object based on the second classification data.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 3, 2018
    Inventors: Gopichandra Surnilla, Stephen B. Smith, Daniel A. Makled, Michael Mcquillen
  • Patent number: 9957906
    Abstract: Methods and systems are provided for estimating a positive crankcase ventilation (PCV) flow based on outputs of an intake manifold oxygen sensor. For example, during engine operation when exhaust gas recirculation (EGR) and fuel canister purge are disabled, PCV flow may be estimated based on a difference between a first output of the sensor with boost enabled and a second output of the sensor with boost disabled. Then, during subsequent operation wherein EGR is enabled, PCV flow is enabled, and purge is disabled, a third output of the sensor may be adjusted based on the estimated PCV flow.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: May 1, 2018
    Assignee: Ford Gloabl Technologies, LLC
    Inventors: Gopichandra Surnilla, James Alfred Hilditch, Matthew John Gerhart, Lynn Aimee Chesney, Stephen B. Smith
  • Publication number: 20180105060
    Abstract: A system for a vehicle includes an interpack switch configured to connect portions of a traction battery when closed to transfer electric charge therebetween, and a controller configured to, responsive to a request, operate the switch to disconnect the portions and to initiate transfer of electric charge to each of the portions in parallel and at a same time.
    Type: Application
    Filed: October 18, 2016
    Publication date: April 19, 2018
    Inventors: Michael MCQUILLEN, Philip Michael GONZALES, Gopichandra SURNILLA
  • Patent number: 9945310
    Abstract: Methods and systems are provided for water injection into an engine and adjusting engine operation based on engine dilution demand and engine knock. In one example, a method may include injecting water into an intake manifold via a port water injector or a manifold water injector and adjusting engine operation. Further, the method may include adjusting engine operation based on a change in engine dilution or knock.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: April 17, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael McQuillen, Daniel A. Makled, Mohannad Hakeem, Gopichandra Surnilla
  • Patent number: 9945316
    Abstract: Methods and systems for simultaneously operating port fuel injectors and direct fuel injectors of an internal combustion engine are described. In one example, operation of a port fuel injector is deactivated in response to an indication of reduced performance of a direct fuel injector so that degradation of the direct fuel injector may be reduced.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: April 17, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Ethan D. Sanborn, Joseph Lyle Thomas, Paul Hollar, Xiaoying Zhang, Gopichandra Surnilla, Stephen George Russ
  • Publication number: 20180100458
    Abstract: Methods and systems are provided for adjusting the amount of secondary fluid being injected into an engine. In one example, a method may include adjusting an amount of secondary fluid injected at an engine cylinder based on a secondary fluid injection amount estimated from outputs of an exhaust oxygen sensor. For example, the secondary fluid injection amount may be estimated based on a first change in pumping current of the exhaust oxygen sensor between a first and second reference voltage when only fuel is injected into the engine cylinder and a second change in pumping current of the exhaust oxygen sensor between the first and second reference voltage when fuel and the secondary fluid are injected into the engine cylinder.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 12, 2018
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Daniel A. Makled
  • Patent number: 9938953
    Abstract: Methods and systems are provided for improving engine spark and torque control. In one example, adaptive spark control of an engine may include a modifier that adjusts the inferred fuel octane estimate and a spark adaptation based on ambient humidity. The method allows the speed-load dependent variation in octane effect of humidity to be reduced.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: April 10, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Mohannad Abdullah Hakeem, Gopichandra Surnilla, Todd Anthony Rumpsa, William Charles Ruona
  • Publication number: 20180095059
    Abstract: Methods and systems are provided for conducting measurements of relative humidity via the use of either an ultrasonic sensor positioned on the vehicle, or via another sensor. In one example, responsive to a request for a relative humidity measurement and an indication of fueled engine operation, the ultrasonic sensor may be utilized, whereas responsive to an indication of non-fueled engine operation, another sensor may be utilized. In this way, robust measurement of relative humidity with desired accuracy may be actively determined, rather than opportunistically, and such measurements of relative humidity may be utilized to adjust vehicle operating parameters, which may improve overall vehicle operation.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 5, 2018
    Inventors: Michael McQuillen, Daniel A. Makled, Gopichandra Surnilla, Richard E. Soltis
  • Publication number: 20180096668
    Abstract: Methods and apparatus are disclosed for hue adjustment of a vehicle display based on ambient light. An example vehicle includes a display, an ambient light sensor to monitor ambient light of the vehicle, and a master lighting controller. The example master light controller is to determine a target hue for the display based on the ambient light, compare the target hue to a current hue of the display, and, in response to the target hue being different than the current hue, adjust the current hue to the target hue.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Gopichandra Surnilla, Daniel A. Makled, Michael Mcquillen
  • Publication number: 20180095058
    Abstract: Methods and systems are provided for conducting measurements of relative humidity via the use of an ultrasonic sensor. In one example, the ultrasonic sensor for conducting the relative humidity measurement is selected from a plurality of ultrasonic sensors positioned at various locations on the vehicle, and where the selecting is accomplished in some examples via the use of one or more onboard cameras configured to identify suitable objects that are stationary with respect to the vehicle. In this way, robustness and accuracy of relative humidity measurements may be improved, lifetime of individual ultrasonic sensors may be extended, and vehicle operating conditions that depend on accurate relative humidity measurements may be improved.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 5, 2018
    Inventors: Michael McQuillen, Gopichandra Surnilla, Douglas Blue, Richard E. Soltis, Daniel A. Makled, Mohannad Hakeem
  • Publication number: 20180095057
    Abstract: Methods and systems are provided for conducting measurements of relative humidity using an ultrasonic sensor. In one example, a plurality of ultrasonic signals having different frequencies are transmitted from a single sensor, and attenuation values of reflected signals are determined only for those signals determined to have the same transit time from transmission to receipt, and where frequency of the plurality of ultrasonic signals may be changed responsive to an indication that the signals may be below a signal-to-noise threshold. In this way, by determining a difference between attenuation values between pairs of signals, where the signals comprise different frequencies and where the signals comprise the same transit times, relative humidity may be accurately determined.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 5, 2018
    Inventors: Michael McQuillen, Gopichandra Surnilla, Douglas Blue, Richard E. Soltis, Daniel A. Makled, Mohannad Hakeem
  • Patent number: 9932938
    Abstract: Methods and systems are provided for diagnosing an intake oxygen sensor. In one example, a method may include indicating degradation of an intake oxygen sensor based on a first time constant of an output of the intake oxygen sensor and a second time constant of an output of a throttle inlet pressure sensor. The method may further include adjusting EGR flow based on the output of the intake oxygen sensor and the output of the throttle inlet pressure sensor when the intake oxygen sensor is not degraded.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: April 3, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Gopichandra Surnilla, Yong-Wha Kim, Michael James Uhrich, Timothy Joseph Clark
  • Patent number: 9926871
    Abstract: A method for an engine may comprise, responsive to a first condition comprising a reference voltage of a first exhaust oxygen sensor operating in variable voltage mode increasing above a threshold voltage, determining a change in an output of the first exhaust oxygen sensor corresponding to the increase in the reference voltage, correcting the output of the first oxygen sensor based on the output change, and adjusting engine operation based on the corrected output. In this way, the accuracy of air-fuel estimates based on the exhaust gas sensor can be preserved, and closed loop fuel control of the engine can be maintained even when the exhaust oxygen sensor is operating VVS mode, thereby reducing engine emissions, increasing fuel economy, and increasing vehicle drivability.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 27, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Lyth Alobiedat, Gopichandra Surnilla, Daniel A. Makled, Mohannad Hakeem, Richard E. Soltis, Michael McQuillen, Stephen B. Smith
  • Patent number: 9926872
    Abstract: Methods and systems are provided for leveraging the pressure dependency of an oxygen sensor for estimating an engine ambient pressure. An intake or exhaust oxygen sensor is used for ambient pressure estimation by applying a reference voltage to the sensor while the engine is being pulled-down in a hybrid vehicle, and correcting an output of the sensor for dilution effects due to ambient humidity. The estimated ambient pressure is used to correct or confirm pressure estimated by other sources, such as other pressure sensors or a pressure model, as well as to tune the performance of the engine.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: March 27, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Daniel A. Makled, Michael McQuillen, Gopichandra Surnilla, Richard E. Soltis
  • Publication number: 20180080896
    Abstract: Various methods are provided for compensating changes in the relation between impedance setpoint and operating temperature in an oxygen sensor. In one embodiment, a method of operating an oxygen sensor comprises adjusting an impedance setpoint based on a change in dry air pumping current of the oxygen sensor.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Gopichandra Surnilla, Richard E. Soltis, Daniel A. Makled
  • Patent number: 9920699
    Abstract: Methods and systems are provided for estimating an amount of exhaust gas recirculation (EGR) from an exhaust passage into an intake passage of an engine system by operating an exhaust oxygen sensor in a variable voltage (VVs) mode. In one example, a method includes during operation of an exhaust oxygen sensor in the VVs mode where a reference voltage of the exhaust oxygen sensor is adjusted from a lower, first voltage to a higher, second voltage, adjusting engine operation based on the EGR amount estimated based on an output of the exhaust oxygen sensor and a learned correction factor based on the second voltage. In this way, the exhaust oxygen sensor may be used to correct for variations arising due to changing fuel composition and ambient humidity and further used to estimate the amount of EGR being recirculated in the system, thereby enhancing engine fueling and EGR control.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: March 20, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael McQuillen, Gopichandra Surnilla, Daniel A. Makled, Richard E. Soltis
  • Patent number: 9909514
    Abstract: A method for a turbocharged engine, comprising: during high load conditions, in response to an elevated engine temperature, after port injecting a first quantity of a first gaseous fuel, direct injecting a second quantity of a second, liquid fuel at a first timing that is a function of a desired air-fuel ratio. In this way, engine power may be maximized while simultaneously decreasing the maximum combustion temperature and mitigating engine knock.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 6, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Mark Allen Dearth, David Karl Bidner, Gopichandra Surnilla, Ross Dykstra Pursifull