Patents by Inventor Gordon E. Fish

Gordon E. Fish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7506566
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 24, 2009
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Patent number: 7464713
    Abstract: Externally detectable electronic article surveillance markers are attached to surgical implements, such as sponges and surgical instruments, appointed for use in a surgical wound. The attachment mechanism facilitates detection by an external interrogating field before the wound has been closed and the patient has left the operating table. The markers are responsive to the imposition of an interrogating field produced by an electronic article surveillance system. Markers contain one or more magnetomechanically responsive elements that are urged into mechanical resonance by the interrogating field. The ring-down of the resonance and the associated dipolar electromagnetic field provide a signal-identifying characteristic detected by a detection system. Upon detection, an audible or visible signal is triggered to alert relevant medical personnel to the need for follow-up care and removal of the offending item. The resonance occurs at a frequency ranging from about 70 to 300 kHz.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: December 16, 2008
    Inventors: Carl E. Fabian, Philip M. Anderson, III, Gordon E. Fish
  • Patent number: 7289013
    Abstract: A bulk amorphous metal inductive device includes a magnetic core having at least one low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air therein. The component has a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The device has one or more electrical windings and is easily customized for specialized magnetic applications, e.g. for use as a transformer or inductor in power conditioning electronic circuitry employing switch-mode circuit topologies and switching frequencies ranging from 1 kHz to 200 kHz or more. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful at frequencies of 1 kHz or more.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: October 30, 2007
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Patent number: 7235910
    Abstract: A selective etching process cuts shapes from amorphous metal strip feedstock. The etching process comprises depositing a chemically resistant material to one side of the strip in a pattern that defines the requisite shape, mating the metal strip with a carrier strip, exposing at least one side of the metal strip to an etching agent to selectively etch the desired shape, and separating the shape from the strip feedstock. A plurality of layers of the shapes is assembled by adhesive lamination to form a generally polyhedrally shaped bulk amorphous metal magnetic component useful in high efficiency electric motors and inductive devices. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: June 26, 2007
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Patent number: 7075440
    Abstract: A miniature magnetic article surveillance system marker is adapted, when armed, to resonate at a frequency provided by an incident magnetic field applied within an interrogation zone. The marker comprises a magnetomechanical element having at least one elongated ductile strip of magnetostrictive ferromagnetic material disposed adjacent to a ferromagnetic element which, upon being magnetized, magnetically biases the strip and arms it to resonate at said frequency. A substantial change in effective magnetic permeability of the marker at the resonant frequency provides the marker with signal identity.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: July 11, 2006
    Inventors: Carl E. Fabian, Philip M. Anderson, III, Gordon E. Fish
  • Patent number: 7011718
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: March 14, 2006
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Patent number: 6960860
    Abstract: An amorphous metal stator for a high efficiency radial-flux electric motor has a plurality of segments, each of which includes a plurality of layers of amorphous metal strips. The plural segments are arranged to form a generally cylindrical stator having a plurality of teeth sections or poles protruding radially inward from the inner surface of the stator. In a first embodiment, the stator back-iron and teeth are constructed such that radial flux passing through the stator crosses just one air gap when traversing each segment of the stator. In a second embodiment, the stator back-iron and teeth are constructed such that radial flux passing through the stator traverses each segment without crossing an air gap.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: November 1, 2005
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. DeCristofaro, Dung A. Ngo, Richard L. Bye, Jr., Peter J. Stamatis, Gordon E. Fish
  • Patent number: 6873239
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having at least one low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air gap therein. The component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhederally shaped part. The device has one or more electrical windings and is easily customized for specialized magnetic applications, e.g. for use as a transformer or inductor in power conditioning electronic circuitry employing switch-mode circuit topologies and switching frequencies ranging from 1 kHz to 200 kHz or more. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful at frequencies of 1 kHz or more.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: March 29, 2005
    Assignee: Metglas Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Publication number: 20040212269
    Abstract: A selective etching process cuts shapes from amorphous metal strip feedstock. The etching process comprises depositing a chemically resistant material to one side of the strip in a pattern that defines the requisite shape, mating the metal strip with a carrier strip, exposing at least one side of the metal strip to an etching agent to selectively etch the desired shape, and separating the shape from the strip feedstock. A plurality of layers of the shapes is assembled by adhesive lamination to form a generally polyhedrally shaped bulk amorphous metal magnetic component useful in high efficiency electric motors and inductive devices. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Publication number: 20040207528
    Abstract: A miniature magnetic article surveillance system marker is adapted, when armed, to resonate at a frequency provided by an incident magnetic field applied within an interrogation zone. The marker comprises a magnetomechanical element having at least one elongated ductile strip of magnetostrictive ferromagnetic material disposed adjacent to a ferromagnetic element which, upon being magnetized, magnetically biases the strip and arms it to resonate at said frequency. A substantial change in effective magnetic permeability of the marker at the resonant frequency provides the marker with signal identity.
    Type: Application
    Filed: February 26, 2004
    Publication date: October 21, 2004
    Inventors: Carl E. Fabian, Philip M. Anderson, Gordon E. Fish
  • Patent number: 6784588
    Abstract: A high efficiency electric motor has a generally polyhedrally shaped bulk amorphous metal magnetic component in which a plurality of layers of amorphous metal strips are laminated together adhesively to form a generally three-dimensional part having the shape of a polyhedron. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz. When the motor is operated at an excitation frequency “f” to a peak induction level Bmax, the component exhibits a core-loss less than about “L” wherein L is given by the formula L=0.005 f (Bmax)1.5+0.000012 f1.5 (Bmax)1.6, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: August 31, 2004
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. DeCristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Publication number: 20040150285
    Abstract: A high efficiency electric motor has a generally polyhedrally shaped bulk amorphous metal magnetic component in which a plurality of layers of amorphous metal strips are laminated together adhesively to form a generally three-dimensional part having the shape of a polyhedron. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz. When the motor is operated at an excitation frequency “f” to a peak induction level Bmax, the component exhibits a core-loss less than about “L” wherein L is given by the formula L=0.005 f(Bmax)1.5+0.000012 f1.5(Bmax)1.6, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 5, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Carl E. Kroger
  • Publication number: 20040129279
    Abstract: Externally detectable electronic article surveillance markers are attached to surgical implements, such as sponges and surgical instruments, appointed for use in a surgical wound. The attachment mechanism facilitates detection by an external interrogating field before the wound has been closed and the patient has left the operating table. The markers are responsive to the imposition of an interrogating field produced by an electronic article surveillance system. Markers contain one or more magnetomechanically responsive elements that are urged into mechanical resonance by the interrogating field. The ring-down of the resonance and the associated dipolar electromagnetic field provide a signal-identifying characteristic detected by a detection system. Upon detection, an audible or visible signal is triggered to alert relevant medical personnel to the need for follow-up care and removal of the offending item. The resonance occurs at a frequency ranging from about 70 to 300 kHz.
    Type: Application
    Filed: November 26, 2003
    Publication date: July 8, 2004
    Inventors: Carl E. Fabian, Philip M. Anderson, Gordon E. Fish
  • Patent number: 6744342
    Abstract: A high performance bulk magnetic component includes a plurality of layers of crystalline, ferromagnetic metal strips adhesively bonded together to form a polyhedrally shaped part. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it exhibits a core-loss less than “L” wherein L is given by the formula L=0.0135 f (Bmax)1.9+0.000108 f1.6 (Bmax)1.92, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively. Performance characteristics of the high performance bulk magnetic component of the present invention are significantly better when compared to silicon-steel components operated over the same frequency range.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: June 1, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish
  • Patent number: 6737784
    Abstract: A bulk amorphous metal magnetic component for an electric machine such as a motor or generator is described. The component may include a plurality of substantially similarly shaped laminations stamped from ferromagnetic amorphous metal strips, stacked and bonded together in registry, wherein the laminations include a plurality of tooth-shaped sections. In an alternate implementation, the component may be constructed by first stacking a plurality of layers of amorphous metal strips, laminating the layers and then cutting the object to form the component. The bulk amorphous metal magnetic component when operated at an excitation frequency “f” to a peak induction level Bmax has a core-loss less than “L” wherein L is given by the formula L=0.0074 f(Bmax)1.3+0.000282 f1.5(Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: May 18, 2004
    Inventors: Scott M. Lindquist, Gordon E. Fish, Nicholas J. DeCristofaro, Peter J. Stamatis
  • Patent number: 6737951
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having plurality of low-loss bulk ferromagnetic amorphous metal magnetic components assembled in juxtaposed relationship to form at least one magnetic circuit and secured in position, e.g. by banding or potting. The device has one or more electrical windings and may be used as a transformer or inductor in an electronic circuit. Each component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful for application in power conditioning circuits operating in switched mode at frequencies of 1 kHz or more. Air gaps are optionally interposed between the mating faces of the constituent components of the device to enhance its energy storage capacity for inductor applications.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: May 18, 2004
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawwa, Seshu V. Tatikola
  • Publication number: 20040085173
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having plurality of low-loss bulk ferromagnetic amorphous metal magnetic components assembled in juxtaposed relationship to form at least one magnetic circuit and secured in position, e.g. by banding or potting. The device has one or more electrical windings and may be used as a transformer or inductor in an electronic circuit. Each component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful for application in power conditioning circuits operating in switched mode at frequencies of 1 kHz or more. Air gaps are optionally interposed between the mating faces of the constituent components of the device to enhance its energy storage capacity for inductor applications.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Seshu V. Tatikola
  • Publication number: 20040085174
    Abstract: A bulk amorphous metal inductive device comprises a magnetic core having at least low-loss bulk ferromagnetic amorphous metal magnetic component forming a magnetic circuit having an air gap therein. The device has one or more electrical windings and may be used as a transformer or inductor in an electronic circuit. The component comprises a plurality of similarly shaped layers of amorphous metal strips bonded together to form a polyhedrally shaped part. The low core losses of the device, e.g. a loss of at most about 12 W/kg when excited at a frequency of 5 kHz to a peak induction level of 0.3 T, make it especially useful for application in power conditioning circuits operating in switched mode at frequencies of 1 kHz or more. The component is fabricated by a process comprising cutting laminations of the requisite shape. The cut laminations are stacked and registered, and then bonded by an adhesive agent. The cutting of laminations is advantageously done with stamping or photolithographic etching techniques.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Ryusuke Hasegawa, Carl E. Kroger, Scott M. Lindquist, Seshu V. Tatikola
  • Patent number: 6675459
    Abstract: A high efficiency electric motor has a generally polyhedrally shaped bulk amorphous metal magnetic component in which a plurality of layers of amorphous metal strips are laminated together to form a generally three-dimensional part having the shape of a polyhedron. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite to each other. The magnetic component is operable at frequencies ranging from about 50 Hz to about 20,000 Hz. When the motor is operated at an excitation frequency “f” to a peak induction level Bmax the component exhibits a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: January 13, 2004
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. DeCristofaro, Peter Joseph Stamatis, Gordon E. Fish
  • Publication number: 20030201864
    Abstract: A high performance bulk magnetic component includes a plurality of layers of crystalline, ferromagnetic metal strips adhesively bonded together to form a polyhedrally shaped part. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it exhibits a core-loss less than “L” wherein L is given by the formula L=0.0135 f (Bmax)1.9+0.000108 f1.6 (Bmax)1.92, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively. Performance characteristics of the high performance bulk magnetic component of the present invention are significantly better when compared to silicon-steel components operated over the same frequency range.
    Type: Application
    Filed: July 23, 2001
    Publication date: October 30, 2003
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish