Patents by Inventor Gordon Ho
Gordon Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230290067Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: ApplicationFiled: May 16, 2023Publication date: September 14, 2023Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
-
Patent number: 11676340Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: GrantFiled: June 6, 2022Date of Patent: June 13, 2023Assignee: The Regents of the University of CaliforniaInventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
-
Publication number: 20230026088Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: ApplicationFiled: June 6, 2022Publication date: January 26, 2023Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
-
Patent number: 11380055Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: GrantFiled: March 7, 2019Date of Patent: July 5, 2022Assignee: The Regents of the University of CaliforniaInventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
-
Patent number: 11189092Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: GrantFiled: June 18, 2019Date of Patent: November 30, 2021Assignee: The Regents of the University of CaliforniaInventors: David Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
-
Publication number: 20210051836Abstract: Herein provided is an autonomous unmanned ground vehicle (AUGV) and handheld device for pest control. The AUGV comprises a chassis with a drive mechanism to displace the AUGV among a plurality of plants comprising at least one weed; an image-capture device to obtain images of the plurality of plants; a motorized arm with a free end displaceable with respect to the chassis; a microwave emitter mounted to the free end, displaceable therewith, and operable to emit microwaves; and a control system to operate at AUGV. The control system comprises a processing unit; and a memory having stored thereon instructions to cause the AUGV to perform: independently navigating the chassis among the plurality of plants; identifying the at least one weed in the images; displacing the motorized arm to position the free end in proximity to the at least one weed; and emitting microwaves toward the at least one weed.Type: ApplicationFiled: January 24, 2019Publication date: February 25, 2021Inventors: Yahoel VAN ESSEN, Gordon HO
-
Publication number: 20190304183Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: ApplicationFiled: June 18, 2019Publication date: October 3, 2019Inventors: David Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
-
Publication number: 20190206127Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: ApplicationFiled: March 7, 2019Publication date: July 4, 2019Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho
-
Patent number: 10319144Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: GrantFiled: December 22, 2016Date of Patent: June 11, 2019Assignee: The Regents of the University of CaliforniaInventors: David E. Krummen, Andrew D. McCulloch, Christopher Villongco, Gordon Ho
-
Publication number: 20170178403Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.Type: ApplicationFiled: December 22, 2016Publication date: June 22, 2017Inventors: David E. Krummen, Andrew D. McCulloch, Christopher Villongco, Gordon Ho