Patents by Inventor Gordon Holt

Gordon Holt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200248253
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: September 23, 2019
    Publication date: August 6, 2020
    Inventor: Gordon HOLT
  • Patent number: 10422000
    Abstract: A device having a nanochannel within a support material, wherein the nanochannel comprises one or more sidewall electrodes; a nanomembrane inside the nanochannel, wherein the nanomembrane encircles a nanopore, has a hydrophobic surface, and is in direct contact with at least a portion of one sidewall electrode of the nanochannel; a lipid bilayer on the hydrophobic surface, the lipid bilayer spanning the nanopore and having a protein nanopore disposed into the lipid bilayer; wherein a size of the nanopore is tuned such that the lipid bilayer spanning the nanopore only accommodates a single protein nanopore.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: September 24, 2019
    Assignee: LUX BIO GROUP INC.
    Inventor: Gordon Holt
  • Patent number: 10175223
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimensionality, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, and sensing.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: January 8, 2019
    Assignee: LUX BIO GROUP, INC.
    Inventor: Gordon Holt
  • Publication number: 20170298432
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 19, 2017
    Inventor: Gordon HOLT
  • Patent number: 9732384
    Abstract: Described herein is a device including a nanotube disposed within a support material. The nanotube has one or more sidewall electrodes, two nanomembranes, and an enzyme. One of the nanomembrane is in direct contact with at least a portion of one sidewall electrode. The other nanomembrane form a nanochannel, nanopore, or a combination thereof, and can alter one or more of a molecular composition, a dimension, or a property thereof in response to electrical stimuli.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: August 15, 2017
    Assignee: LUX BIO GROUP, INC.
    Inventor: Gordon Holt
  • Patent number: 9632073
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: April 25, 2017
    Assignee: LUX BIO GROUP, INC.
    Inventor: Gordon Holt
  • Publication number: 20160370344
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimensionality, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Inventor: Gordon Holt
  • Patent number: 9434990
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: September 6, 2016
    Assignee: LUX BIO GROUP, INC.
    Inventor: Gordon Holt
  • Publication number: 20150247193
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 3, 2015
    Inventor: Gordon Holt
  • Publication number: 20150212032
    Abstract: Described are devices and methods for detecting the match quality and concentration of analytes binding to an electrode surface. The devices utilize a clock to measure capacitance change as a function of time and a temperature controller to measure the capacitance change as a function of temperature.
    Type: Application
    Filed: April 3, 2015
    Publication date: July 30, 2015
    Inventors: Gordon HOLT, Hernan CASTRO, Brandon BARNETT
  • Patent number: 8999724
    Abstract: Described are devices and methods for detecting the match quality and concentration of analytes binding to an electrode surface. The devices utilize a clock to measure capacitance change as a function of time and a temperature controller to measure the capacitance change as a function of temperature.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 7, 2015
    Assignee: Intel Corporation
    Inventors: Gordon Holt, Hernan Castro, Brandon Barnett
  • Patent number: 8968545
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: March 3, 2015
    Assignee: Lux Bio Group, Inc.
    Inventor: Gordon Holt
  • Patent number: 8614086
    Abstract: Described are quality control methods and devices for the reproducible manufacturing and integrity monitoring of polymers on electrochemical synthesis and detection chips. The devices and methods allow for simultaneous manufacturing and synthesis of polymers.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: December 24, 2013
    Assignee: Intel Corporation
    Inventors: Gordon Holt, Ghadeer Antanius, Brandon Barnett
  • Publication number: 20130260371
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: LUX BIO GROUP, INC.
    Inventor: Gordon HOLT
  • Publication number: 20130260472
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: Lux Bio Group, Inc.
    Inventor: Gordon HOLT
  • Publication number: 20130256137
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: LUX BIO GROUP, INC.
    Inventor: Gordon HOLT
  • Publication number: 20130256144
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: LUX BIO GROUP, INC.
    Inventor: Gordon HOLT
  • Publication number: 20130186767
    Abstract: Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
    Type: Application
    Filed: December 22, 2012
    Publication date: July 25, 2013
    Inventors: Hernan Adolfo CASTRO, Gordon Holt, Brandon Barnett, Handong Li, Narayan Sundararajan, Wei Wang
  • Patent number: 8486631
    Abstract: Described are quality control methods and devices for the reproducible manufacturing and integrity monitoring of polymers on electrochemical synthesis and detection chips. The devices and methods allow for simultaneous manufacturing and synthesis of polymers.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 16, 2013
    Assignee: Intel Corporation
    Inventors: Gordon Holt, Ghadeer Antanius, Brandon Barnett
  • Patent number: 8338097
    Abstract: Described are devices and methods for detecting binding on an electrode surface. In addition, devices and methods for electrochemically synthesizing polymers and devices and methods for synthesizing and detecting binding to the polymer on a common integrated device surface are described.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 25, 2012
    Assignee: Intel Corporation
    Inventors: Hernan Castro, Gordon Holt, Brandon Barnett, Handong Li, Narayan Sundararajan, Wei Wang