Patents by Inventor Gordon J. Freeman

Gordon J. Freeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030044416
    Abstract: Isolated nucleic acid molecules encoding novel CD100 molecules which stimulate a leukocyte response, such as a B cell response, including B cell aggregation, B cell differentiation, B cell survival, and/or T cell proliferationare disclosed. These novel molecules have a certain homology to semaphorins, proteins which are growth cone guidance molecules that are critical for guiding growing axons of neurons to their targets. In addition to isolated nucleic acids molecules, antisense nucleic acid molecules, recombinant expression vectors containing a nucleic acid molecule of the invention, host cells into which the expression vectors have been introduced are also described. The invention further provides isolated CD100 proteins, fusion proteins and active fragments thereof. Diagnostic and therapeutic methods utilizing compositions of the invention are also provided.
    Type: Application
    Filed: November 9, 1995
    Publication date: March 6, 2003
    Applicant: DANA-FARBER CANCER INSTITUTE
    Inventors: KATHRYN T. HALL, GORDON J. FREEMAN, JOACHIM L. SCHULTZE, VASSILIKI A. BOUSSIOTIS, LEE M. NADLER
  • Publication number: 20030044768
    Abstract: Disclosed is a method for modulating an immune response by modulating signaling via PD-1. The immune response may be downregulated by increasing signaling via PD-1, or may be upregulated by decreasing signaling via PD-1. Agents which are useful for stimulating signaling via PD-1 to downregulate an immune response include an activating antibody that recognizes PD-1, a form of B7-4 that binds to an inhibitory receptor, and a small molecule that binds to PD-1. Agents which are useful for inhibiting signaling via PD-1 to upregulate an immune response include a blocking antibody that recognizes PD-1, a non-activating form of B7-4, an antibody that recognizes B7-4, and a soluble form of PD-1. Also disclosed is a method for modulating the interaction of B7-4 with an inhibitory receptor on an immune cell. The method comprises contacting an antigen presenting cell which expresses B7-4 with an agent such as a form of B7-4, a form of PD-1, or an agent that modulates the interaction of B7-4 and PD-1.
    Type: Application
    Filed: April 2, 2002
    Publication date: March 6, 2003
    Applicant: Dana-Farber Cancer Institute, Inc.
    Inventors: Clive Wood, Gordon J. Freeman, Divya Chaudhary
  • Publication number: 20020182727
    Abstract: Methods for selectively modulating a Th2-type response within a population of activated CD4+ T cells are provided. The methods of the invention involve contacting the CD4+ T cells with an agent which modulates a B7-2-induced signal in the CD4+T cells, such that the Th2-type response is modulated. Methods for either stimulating or inhibiting Th2 type responses are provided by the invention.
    Type: Application
    Filed: March 11, 2002
    Publication date: December 5, 2002
    Applicant: Dana-Farber Cancer Institute
    Inventors: Gordon J. Freeman, Vassiliki A. Boussiotis, Lee M. Nadler
  • Publication number: 20020160000
    Abstract: The invention identifies PD-1 as a receptor for B7-4. B7-4 can inhibit immune cell activation upon binding to an inhibitory receptor on an immune cell. Accordingly, the invention provides agents for modulating PD-1, B7-4, and the interaction between B7-4 and PD-1 in order to modulate a costimulatory or an inhibitory signal in a immune cell resulting in modulation of the immune response.
    Type: Application
    Filed: February 6, 2002
    Publication date: October 31, 2002
    Applicant: Dana-Farber Cancer Institute, Inc.
    Inventors: Clive Wood, Gordon J. Freeman
  • Patent number: 6465251
    Abstract: We teach a strategy to obtain large quantities of desired APCs, activated B cells, which are superior in their capacity to present tumor protein antigen in a multiadministration protocol. Human B cells can be obtained from peripheral blood in large numbers. These cells can be activated in vitro by coculture with CD40L (CD40-B cells) and an immunosuppressive agent such as cyclosporin A. They can expanded up to 1×103 to 1×104 fold in 2 weeks or 1×105 to 1×106 fold in 2 months. We demonstrate these cells are most efficient APCs comparable to DCs in stimulating allogeneic CD4+ CD45RA+, CD4+ CD45RO+, and CD8+ T cells. In contrast to DCs, CD40-B cells are fully functional even in the presence of immunosuppressive cytokines such as IL-10 and TGF&bgr;.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: October 15, 2002
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Joachim L. Schultze, Gordon J. Freeman, John G. Gribben, Lee M. Nadler
  • Patent number: 6451305
    Abstract: Methods for stimulating a T cell response to a tumor cell in a subject with a tumor which involve modifying the tumor cell to express a CD2 ligand and a CD28 or CTLA4 ligand, are disclosed. Methods wherein the tumor cell is obtained from the subject and modified ex vivo to form a modified tumor cell and then the modified tumor cell is administered to the subject, are also disclosed.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: September 17, 2002
    Assignee: Dana-Farber Cancer Institute
    Inventors: Vassiliki A. Boussiotis, Gordon J. Freeman, Lee M. Nadler
  • Publication number: 20020098542
    Abstract: Novel structural forms of T cell costimulatory molecules are described. These structural forms comprise a novel structural domain or have a structural domain deleted or added. The structural forms correspond to naturally-occurring alternatively spliced forms of T cell costimulatory molecules or variants thereof which can be produced by standard recombinant DNA techniques. In one embodiment, the T cell costimulatory molecule of the invention contains a novel cytoplasmic domain. In another embodiment, the T cell costimulatory molecule of the invention contains a novel signal peptide domain or has an immunoglobulin variable region-like domain deleted. The novel structural forms of T cell costimulatory molecules can be used to identify agents which stimulate the expression of alternative forms of costimulatory molecules and to identify components of the signal transduction pathway which results in costimulation of T cells.
    Type: Application
    Filed: April 19, 2001
    Publication date: July 25, 2002
    Applicant: Brigham and Womens' Hospital
    Inventors: Arlene H. Sharpe, Francescopaolo Borriello, Gordon J. Freeman, Lee M. Nadler
  • Publication number: 20020086421
    Abstract: TUMOR CELLS WITH INCREASED IMMUNOGENICITY AND USES THEREFOR Tumor cells modified to express a T cell costimulatory molecule are disclosed. In one embodiment, the costimulatory molecule is a CD28/CTLA4 ligand, preferably a B lymphocyte antigen B7. The tumor cells of the invention can be modified by transfection with nucleic acid encoding a T cell costimulatory molecule, by using an agent which induces or increases expression of a T cell costimulatory molecule on the tumor cell surface or by coupling a T cell costimulatory molecule to the tumor cell surface. Tumor cells further modified to express MHC class I and/or class II molecules or in which expression of an MHC associated protein, the invariant chain, is inhibited are also disclosed. The modified tumor cells of the invention can be used in methods for treating a patient with a tumor, preventing or inhibiting metastatic spread of a tumor or preventing or inhibiting recurrence of a tumor.
    Type: Application
    Filed: September 27, 2001
    Publication date: July 4, 2002
    Applicant: University of Maryland
    Inventors: Suzanne Ostrand-Rosenberg, Sivasubramanian Baskar, Laurie H. Glimcher, Gordon J. Freeman, Lee M. Nadler
  • Publication number: 20020086414
    Abstract: Nucleic acids encoding novel CTLA4/CD28 ligands which costimulate T cell activation are disclosed. In one embodiment, the nucleic acid has a sequence which encodes a B lymphocyte antigen, B7-2. Preferably, the nucleic acid is a DNA molecule comprising at least a portion of a nucleotide sequence shown in FIG. 8, SEQ ID NO:1 or FIG. 14, SEQ ID NO:23. The nucleic acid sequences of the invention can be integrated into various expression vectors, which in turn direct the synthesis of the corresponding proteins or peptides in a variety of hosts, particularly eukaryotic cells, such as mammalian and insect cell culture. Also disclosed are host cells transformed to produce proteins or peptides encoded by the nucleic acid sequences of the invention and isolated proteins and peptides which comprise at least a portion of a novel B lymphocyte antigen. Proteins and peptides described herein can be administered to subjects to enhance or suppress T cell-mediated immune responses.
    Type: Application
    Filed: October 22, 1999
    Publication date: July 4, 2002
    Inventors: GORDON J. FREEMAN, LEE M. NADLER, GARY S. GRAY
  • Publication number: 20020076407
    Abstract: Methods for inducing a population of T cells to proliferate by activating the population of T cells and stimulating an accessory molecule on the surface of the T cells with a ligand which binds the accessory molecule are described. T cell proliferation occurs in the absence of exogenous growth factors or accessory cells. T cell activation is accomplished by stimulating the T cell receptor (TCR)/CD3 complex or the CD2 surface protein. To induce proliferation of an activated population T cells, an accessory molecule on the surface of the T cells, such as CD28, is stimulated with a ligand which binds the accessory molecule. The T cell population expanded by the method of the invention can be genetically transduced and used for immunotherapy or can be used in methods of diagnosis.
    Type: Application
    Filed: October 29, 1998
    Publication date: June 20, 2002
    Inventors: CARL H. JUNE, CRAIG B. THOMPSON, GARY J. NABEL, GARY S. GRAY, PAUL D. RENNERT, GORDON J. FREEMAN
  • Publication number: 20020051784
    Abstract: Methods for modulating antigen-specific T cell unresponsiveness which involve inhibiting or stimulating an unresponsive T cell through a cell surface receptor, CD2, are disclosed. Agents which inhibit stimulation of an unresponsive T cell through a CD2 surface receptor are useful therapeutically in situations where it is desirable to inhibit an immune response to an antigen(s), for example in organ or bone marrow transplantation and autoimmune diseases. Methods for reversing T cell unresponsiveness by contacting the T cell with an agent which stimulates the T cell through a CD2 surface receptor are useful therapeutically to stimulate an immune response to an antigen(s). For example, the method is useful to stimulate an anti-tumor response in a subject with a tumor or stimulate a response against a pathogenic agent or increase the efficacy of vaccination.
    Type: Application
    Filed: November 28, 2001
    Publication date: May 2, 2002
    Applicant: Dana Farber Cancer institute
    Inventors: Vassiliki A. Boussiotis, Gordon J. Freeman, Lee M. Nadler
  • Patent number: 6319709
    Abstract: Tumor cells modified to express a T cell costimulatory molecule are disclosed. In one embodiment, the costimulatory molecule is a CD28/CTLA4 ligand, preferably a B lymphocyte antigen B7. The tumor cells of the invention can be modified by transfection with nucleic acid encoding a T cell costimulatory molecule, by using an agent which induces or increases expression of a T cell costimulatory molecule on the tumor cell surface or by coupling a T cell costimulatory molecule to the tumor cell surface. Tumor cells further modified to express MHC class I and/or class II molecules or in which expression of an MHC associated protein, the invariant chain, is inhibited are also disclosed. The modified tumor cells of the invention can be used in methods for treating a patient with a tumor, preventing or inhibiting metastatic spread of a tumor or preventing or inhibiting recurrence of a tumor.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: November 20, 2001
    Assignees: President and Fellows of Harvard College, Dana-Farber Cancer Institute, University of Maryland, Baltimore County
    Inventors: Suzanne Ostrand-Rosenberg, Sivasubramanian Baskar, Laurie H. Glimcher, Gordon J. Freeman, Lee M. Nadler
  • Patent number: 6294660
    Abstract: Nucleic acids encoding B7-1 and B7-2 molecules which bind CD28 or CTLA4 are described. These structural forms correspond to naturally-occurring alternatively spliced forms comprising cytoplasmic and signal peptide domains of T cell costimulatory molecules or variants thereof which can be produced by standard recombinant DNA techniques. These T cell costimulatory molecules can be used to identify agents which stimulate the express of alternative forms of costimulatory molecules and to identify components of the signal transduction pathway which results in costimulation of T cells.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: September 25, 2001
    Assignees: Dana-Farber Cancer Institute Brigham, Women's Hospital
    Inventors: Arlene H. Sharpe, Francescopaolo Borriello, Gordon J. Freeman, Lee M. Nadler
  • Patent number: 6218510
    Abstract: Structural forms of T cell costimulatory B7-1 and B7-2 molecules are described. These structural forms comprise a structural domain or have a structural domain deleted or added. The structural forms correspond to naturally-occurring alternatively spliced forms of T cell costimulatory molecules or variants thereof which can be produced by standard recombinant DNA techniques. In one embodiment, the T cell costimulatory molecule of the invention contains a cytoplasmic domain. In another embodiment, the T cell costimulatory molecule of the invention contains a signal peptide domain or has an immunoglobulin variable region-like domain deleted. The structural forms of T cell costimulatory molecules can be used to identify agents which stimulate the expression of alternative forms of costimulatory molecules and to identify components of the signal transduction pathway which results in costimulation of T cells.
    Type: Grant
    Filed: March 2, 1994
    Date of Patent: April 17, 2001
    Assignees: Brigham & Woman's Hospital, Dana-Farber Cancer Institute
    Inventors: Arlene H. Sharpe, Francescopaolo Borriello, Gordon J. Freeman, Lee M. Nadler
  • Patent number: 6149905
    Abstract: Tumor cells modified to express a T cell costimulatory molecule are disclosed. In one embodiment, the costimulatory molecule is a CD28/CTLA4 ligand, preferably a B lymphocyte antigen B7. The tumor cells of the invention can be modified by transfection with nucleic acid encoding a T cell costimulatory molecule, by using an agent which induces or increases expression of a T cell costimulatory molecule on the tumor cell surface or by coupling a T cell costimulatory molecule to the tumor cell surface. Tumor cells further modified to express MHC class I and/or class II molecules or in which expression of an MHC associated protein, the invariant chain, is inhibited are also disclosed. The modified tumor cells of the invention can be used in methods for treating a patient with a tumor, preventing or inhibiting metastatic spread of a tumor or preventing or inhibiting recurrence of a tumor. A method for specifically inducing a CD4.sup.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: November 21, 2000
    Assignees: Genetics Institute, Inc., Dana-Farber Cancer Institute, Presidents and Fellows of Harvard College
    Inventors: Suzanne Ostrand-Rosenberg, Sivasubramanian Baskar, Laurie H. Glimcher, Gordon J. Freeman, Lee M. Nadler
  • Patent number: 6130316
    Abstract: Nucleic acids encoding novel CTLA4/CD28 ligands which costimulate T cell activation are disclosed. In one embodiment, the nucleic acid has a sequence which encodes a B lymphocyte antigen, B7-2. Preferably, the nucleic acid is a DNA molecule comprising at least a portion of a nucleotide sequence shown in FIG. 8, SEQ ID NO:1 or FIG. 14, SEQ ID NO:23. The nucleic acid sequences of the invention can be integrated into various expression vectors, which in turn direct the synthesis of the corresponding proteins or peptides in a variety of hosts, particularly eukaryotic cells, such as mammalian and insect cell culture. Also disclosed are host cells transformed to produce proteins or peptides encoded by the nucleic acid sequences of the invention and isolated proteins and peptides which comprise at least a portion of a novel B lymphocyte antigen. Proteins and peptides described herein can be administered to subjects to enhance or suppress T cell-mediated immune responses.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: October 10, 2000
    Assignees: Dana Farber Cancer Institute, Replingen Corporation
    Inventors: Gordon J. Freeman, Lee M. Nadler, Gary S. Gray, Edward Greenfield
  • Patent number: 6084067
    Abstract: Nucleic acids encoding novel CTLA4/CD28 ligands which costimulate T cell activation are disclosed. In one embodiment, the nucleic acid has a sequence which encodes a B lymphocyte antigen, B7-2. Preferably, the nucleic acid is a DNA molecule comprising at least a portion of a nucleotide sequence shown in FIG. 8, SEQ ID NO:1 or FIG. 14, SEQ ID NO:23. The nucleic acid sequences of the invention can be integrated into various expression vectors, which in turn direct the synthesis of the corresponding proteins or peptides in a variety of hosts, particularly eukaryotic cells, such as mammalian and insect cell culture. Also disclosed are host cells transformed to produce proteins or peptides encoded by the nucleic acid sequences of the invention and isolated proteins and peptides which comprise at least a portion of a novel B lymphocyte antigen. Proteins and peptides described herein can be administered to subjects to enhance or suppress T cell-mediated immune responses.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 4, 2000
    Assignees: Dana-Farber Cancer Institute, Genetics Institute, Inc.
    Inventors: Gordon J. Freeman, Lee M. Nadler, Gary S. Gray
  • Patent number: 6071716
    Abstract: Isolated nucleic acid molecules encoding a B cell activation antigen, B7, are provided. In one embodiment, the nucleic acid molecules are DNA sequences. The DNA sequences of the invention can be integrated into various expression vectors, which in turn can direct the synthesis of the corresponding proteins or peptides in a variety of hosts, particularly eukaryotic cells, such as mammalian and insect cell culture. Also provided are host cells transformed to produce proteins or peptides encoded by the DNA molecules of the present invention and purified proteins and peptides which comprise at least a portion of the B cell activation antigen. The proteins and peptides comprise at least a portion of the mature form of the B7 activation antigen and preferably comprise a soluble form of the B7 protein.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: June 6, 2000
    Assignee: Dana-Farber Cancer Institute
    Inventors: Gordon J. Freeman, Arnold S. Freedman, Lee M. Nadler
  • Patent number: 5942607
    Abstract: Isolated nucleic acids encoding novel CTLA4/CD28 ligands which costimulate T cell activation are disclosed. In one embodiment, the isolated nucleic acid has a sequence which encodes a B lymphocyte activation antigen, B7-2. Preferably, the nucleic acid is a DNA molecule comprising at least a portion of a nucleotide sequence shown in FIG. 8, SEQ ID NO: 1. The nucleic acid sequences of the invention can be integrated into various expression vectors, which in turn can direct the synthesis of the corresponding proteins or peptides in a variety of hosts, particularly eukaryotic cells, such as mammalian and insect cell culture. Also disclosed are host cells transformed to produce proteins or peptides encoded by the nucleic acid sequences of the invention and isolated proteins and peptides which comprise at least a portion of a novel B lymphocyte antigen.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: August 24, 1999
    Assignee: Dana-Farber Cancer Institute
    Inventors: Gordon J. Freeman, Lee M. Nadler, Gary S. Gray
  • Patent number: 5861310
    Abstract: Tumor cells modified to express one or more T cell costimulatory molecules are disclosed. Preferred costimulatory molecules are B7-2 and B7-3. The tumor cells of the invention can be modified by transfection with nucleic acid encoding B7-2 and/or B7-3, by using an agent which induces or increases expression of B7-2 and/or B7-3 on the tumor cell or by coupling B7-2 and/or B7-3 to the tumor cell. Tumor cells modified to express B7-2 and/or B7-3 can be further modified to express B7. Tumor cells further modified to express MHC class I and/or class II molecules or in which expression of an MHC associated protein, the invariant chain, is inhibited are also disclosed. The modified tumor cells of the invention can be used in methods for treating a patient with a tumor, preventing or inhibiting metastatic spread of a tumor or preventing or inhibiting recurrence of a tumor. A method for specifically inducing a CD4.sup.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: January 19, 1999
    Assignee: Dana-Farber Cancer Institute
    Inventors: Gordon J. Freeman, Lee M. Nadler, Gary S. Gray