Patents by Inventor Gordon L. Bourns

Gordon L. Bourns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962131
    Abstract: Integrated device having GDT and MOV functionalities. In some embodiments, an electrical device can include a first layer and a second layer joined with an interface, with each having an outer surface and an inner surface, such that the inner surfaces of the first and second layers define a sealed chamber therebetween. The electrical device can further include an outer electrode implemented on the outer surface of each of the first and second layers, and an inner electrode implemented on the inner surface of each of the first and second layers. The first layer can include a metal oxide material such that the first outer electrode, the first layer, and the first inner electrode provide a metal oxide varistor (MOV) functionality, and the first inner electrode, the second inner electrode, and the sealed chamber provide a gas discharge tube (GDT) functionality.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: April 16, 2024
    Inventors: Kelly Casey, Gordon L. Bourns
  • Patent number: 11715631
    Abstract: Gas discharge tube having glass seal. In some embodiments, a gas discharge tube can include an insulator layer having first and second sides and defining an opening, and first and second electrodes that cover the opening on the first and second sides of the insulator layer, respectively. The gas discharge tube can further include a first glass layer implemented between the first electrode and the first side of the insulator layer, and a second glass layer implemented between the second electrode and the second side of the insulator layer, such that the first and second glass layers provide a seal for a chamber defined by the opening and the first and second electrodes.
    Type: Grant
    Filed: April 14, 2022
    Date of Patent: August 1, 2023
    Assignee: Bourns, Inc.
    Inventors: Zuoyi Wang, Peter Shak, Gordon L. Bourns
  • Publication number: 20230178273
    Abstract: Devices and methods related to metal oxide varistor (MOV) having modified edge. In some embodiments, a MOV can include a metal oxide layer having first side and second sides, first and second electrodes implemented on the first and second sides of the metal oxide layer, respectively, with each electrode including a laterally inner portion and an edge portion. The edge portion of at least the first electrode can have a flared profile. In some embodiments, two of such MOVs can be joined to provide a sealed chamber defined by shapes of the first sides of the respective metal oxide layers and enclosing a gas therein, such that the sealed chamber with the gas and the first electrodes of the two MOVs form a gas discharge tube (GDT).
    Type: Application
    Filed: August 22, 2022
    Publication date: June 8, 2023
    Inventors: Kelly C. CASEY, Oscar ULLOA ESQUIVEL, Gordon L. BOURNS, Fernando ESTRADA HERNANDEZ, Che-Yi SU
  • Publication number: 20220238305
    Abstract: Gas discharge tube having glass seal. In some embodiments, a gas discharge tube can include an insulator layer having first and second sides and defining an opening, and first and second electrodes that cover the opening on the first and second sides of the insulator layer, respectively. The gas discharge tube can further include a first glass layer implemented between the first electrode and the first side of the insulator layer, and a second glass layer implemented between the second electrode and the second side of the insulator layer, such that the first and second glass layers provide a seal for a chamber defined by the opening and the first and second electrodes.
    Type: Application
    Filed: April 14, 2022
    Publication date: July 28, 2022
    Inventors: Zuoyi WANG, Peter SHAK, Gordon L. BOURNS
  • Patent number: 11309166
    Abstract: Methods for fabricating gas discharge tubes. In some embodiments, a method for fabricating a gas discharge tube (GDT) device can include providing or forming an insulator substrate having first and second sides and defining an opening. The method can further include providing or forming a first electrode and a second electrode. The method can further include forming a first glass seal between the first electrode and the first side of the insulator substrate, and a second glass seal between the second electrode and the second side of the insulator substrate, such that the first and second glass seals provide a hermetic seal for a chamber defined by the opening and the first and second electrodes.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 19, 2022
    Assignee: Bourns, Inc.
    Inventors: Zuoyi Wang, Peter Shak, Gordon L. Bourns
  • Publication number: 20210272773
    Abstract: Methods for fabricating gas discharge tubes. In some embodiments, a method for fabricating a gas discharge tube (GDT) device can include providing or forming an insulator substrate having first and second sides and defining an opening. The method can further include providing or forming a first electrode and a second electrode. The method can further include forming a first glass seal between the first electrode and the first side of the insulator substrate, and a second glass seal between the second electrode and the second side of the insulator substrate, such that the first and second glass seals provide a hermetic seal for a chamber defined by the opening and the first and second electrodes.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 2, 2021
    Inventors: Zuoyi WANG, Peter SHAK, Gordon L. BOURNS
  • Patent number: 11081319
    Abstract: Glass sealed gas discharge tubes. In some embodiments, a gas discharge tube (GDT) can include an insulator substrate having first and second sides and defining an opening. The GDT can further include a first electrode implemented to cover the opening on the first side of the insulator substrate, and a second electrode implemented to cover the opening on the second side of the insulator substrate. The GDT can further include a first glass seal implemented between the first electrode and the first side of the insulator substrate, and a second glass seal implemented between the second electrode and the second side of the insulator substrate, such that the first and second glass seals provide a hermetic seal for a chamber defined by the opening and the first and second electrodes.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: August 3, 2021
    Assignee: Bourns, Inc.
    Inventors: Zuoyi Wang, Peter Shak, Gordon L. Bourns
  • Publication number: 20210175042
    Abstract: Integrated device having GDT and MOV functionalities. In some embodiments, an electrical device can include a first layer and a second layer joined with an interface, with each having an outer surface and an inner surface, such that the inner surfaces of the first and second layers define a sealed chamber therebetween. The electrical device can further include an outer electrode implemented on the outer surface of each of the first and second layers, and an inner electrode implemented on the inner surface of each of the first and second layers. The first layer can include a metal oxide material such that the first outer electrode, the first layer, and the first inner electrode provide a metal oxide varistor (MOV) functionality, and the first inner electrode, the second inner electrode, and the sealed chamber provide a gas discharge tube (GDT) functionality.
    Type: Application
    Filed: February 18, 2021
    Publication date: June 10, 2021
    Inventors: Kelly CASEY, Gordon L. BOURNS
  • Publication number: 20190074162
    Abstract: Glass sealed gas discharge tubes. In some embodiments, a gas discharge tube (GDT) can include an insulator substrate having first and second sides and defining an opening. The GDT can further include a first electrode implemented to cover the opening on the first side of the insulator substrate, and a second electrode implemented to cover the opening on the second side of the insulator substrate. The GDT can further include a first glass seal implemented between the first electrode and the first side of the insulator substrate, and a second glass seal implemented between the second electrode and the second side of the insulator substrate, such that the first and second glass seals provide a hermetic seal for a chamber defined by the opening and the first and second electrodes.
    Type: Application
    Filed: May 29, 2018
    Publication date: March 7, 2019
    Inventors: Zuoyi WANG, Peter SHAK, Gordon L. BOURNS
  • Patent number: 10032621
    Abstract: Devices and methods related to flat discharge tubes. In some embodiments, a gas discharge tube (GDT) device can include a first insulator substrate having first and second sides and defining an opening. The GDT device can further include second and third insulator substrates mounted to the first and second sides of the first insulator substrate with first and second seals, respectively, such that inward facing surfaces of the second and third insulator substrates and the opening of the first insulator substrate define a chamber. The GDT device can further include first and second electrodes implemented on the respective inward facing surfaces of the second and third insulator substrates, and first and second terminals implemented on at least one external surface of the GDT device. The GDT device can further include electrical connections implemented between the first and second electrodes and the first and second terminals, respectively.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: July 24, 2018
    Assignee: Bourns, Inc.
    Inventors: Jan Heath, Gordon L. Bourns
  • Patent number: 9697934
    Abstract: Surface-mountable conductive polymer devices include a conductive polymer layer between first and second electrodes, on which are disposed first and second insulation layers, respectively. First and second planar conductive terminals are on the second insulation layer. A first cross-conductor connects the second electrode to the first terminal, and is separated from the first electrode by a portion of the first insulation layer. A second cross-conductor connects the first electrode to the second terminal, and is separated from the second electrode by a portion of the second insulation layer. In some embodiments, at least one cross-conductor includes a beveled portion through the first insulation layer to provide enhanced adhesion between the cross-conductor and the first insulation layer, while allowing greater thermal expansion without undue stress.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: July 4, 2017
    Assignee: BOURNS, INC.
    Inventors: Gordon L. Bourns, Stelar Chu, Daniel E. Grindell, David Huang, John Kelly, Erik Meijer
  • Publication number: 20170098495
    Abstract: Surface-mountable conductive polymer devices include a conductive polymer layer between first and second electrodes, on which are disposed first and second insulation layers, respectively. First and second planar conductive terminals are on the second insulation layer. A first cross-conductor connects the second electrode to the first terminal, and is separated from the first electrode by a portion of the first insulation layer. A second cross-conductor connects the first electrode to the second terminal, and is separated from the second electrode by a portion of the second insulation layer. In some embodiments, at least one cross-conductor includes a beveled portion through the first insulation layer to provide enhanced adhesion between the cross-conductor and the first insulation layer, while allowing greater thermal expansion without undue stress.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 6, 2017
    Applicant: BOURNS, INC.
    Inventors: Gordon L. Bourns, Stelar Chu, Daniel E. Grindell, David Huang, John Kelly, Erik Meijer
  • Patent number: 9552909
    Abstract: Surface-mountable devices include a conductive polymer layer between first and second electrodes, on which are disposed first and second insulation layers, respectively, with first and second planar terminals on the second insulation layer. A first cross-conductor connects the second electrode to the first terminal, and is separated from the first electrode by a portion of the first insulation layer. A second cross-conductor connects the first electrode to the second terminal, and is separated from the second electrode by a portion of the second insulation layer. At least one cross-conductor may include a beveled portion through the first insulation layer. Alternatively, at least one cross-conductor may contact an anchor pad on the first insulation layer, the anchor pad having a small area relative to the areas of the terminals. Enhanced adhesion between the cross-conductor(s) and the first insulation layer is provided, while allowing thermal expansion without excessive stress.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: January 24, 2017
    Assignee: BOURNS, INC.
    Inventors: Gordon L. Bourns, Stelar Chu, Daniel E. Grindell, David Huang, John Kelly, Erik Meijer
  • Publication number: 20160276146
    Abstract: Devices and methods related to flat discharge tubes. In some embodiments, a gas discharge tube (GDT) device can include a first insulator substrate having first and second sides and defining an opening. The GDT device can further include second and third insulator substrates mounted to the first and second sides of the first insulator substrate with first and second seals, respectively, such that inward facing surfaces of the second and third insulator substrates and the opening of the first insulator substrate define a chamber. The GDT device can further include first and second electrodes implemented on the respective inward facing surfaces of the second and third insulator substrates, and first and second terminals implemented on at least one external surface of the GDT device. The GDT device can further include electrical connections implemented between the first and second electrodes and the first and second terminals, respectively.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 22, 2016
    Inventors: Jan HEATH, Gordon L. BOURNS
  • Publication number: 20160087409
    Abstract: Disclosed are devices and methods related to gas discharge tubes (GDTs). In some embodiments, a plurality of GDTs can be fabricated from an insulator plate having a first side and a second side, with the insulator plate defining a plurality of openings. Each opening can be dimensioned to be capable of being covered by first and second electrodes on the first and second sides of the insulator plate to thereby define an enclosed gas volume configured for a GDT operation.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 24, 2016
    Inventors: John KELLY, Johan SCHLEIMANN-JENSEN, Jan HEATH, Craig Robert SHIPLEY, Gordon L. BOURNS
  • Patent number: 9202682
    Abstract: Disclosed are devices and methods related to flat gas discharge tubes (GDTs). In some embodiments, a plurality of GDTs can be fabricated from an insulator plate having a first side and a second side, with the insulator plate defining a plurality of openings. Each opening can be covered by first and second electrodes on the first and second sides of the insulator plate to thereby define an enclosed gas volume configured for GDT operation. Various examples related to such GDTs, including electrode configurations, opening configurations, pre-ionization features, grouping of a GDT with another GDT or device, and packaging configurations, are disclosed.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: December 1, 2015
    Assignee: Bourns, Inc.
    Inventors: John Kelly, Johan Schleimann-Jensen, Jan Heath, Craig Robert Shipley, Gordon L. Bourns
  • Publication number: 20150002256
    Abstract: Disclosed are devices and methods related to laminated polymeric planar magnetics. In some embodiments, a magnetic device can have a base layer including a polymeric laminate layer. The base layer can further include a set of one or more conductive ribbons implemented on a first side of the polymeric laminate layer. The base layer can have a perimeter that includes at least one cut edge. The magnetic device can further include a structure implemented on the base layer. The structure can include a set of one or more conductor features implemented on a side away from the base layer. The structure can have a perimeter that includes an edge set inward from the cut edge by an amount sufficient to allow a cutting operation that cuts the polymeric laminate layer to yield the cut edge.
    Type: Application
    Filed: March 11, 2014
    Publication date: January 1, 2015
    Inventors: Gordon L. BOURNS, John KELLY, Andy CHOW, Chi-Hao KU, Erik MEIJER
  • Publication number: 20140239804
    Abstract: Disclosed are devices and methods related to flat gas discharge tubes (GDTs). In some embodiments, a plurality of GDTs can be fabricated from an insulator plate having a first side and a second side, with the insulator plate defining a plurality of openings. Each opening can be covered by first and second electrodes on the first and second sides of the insulator plate to thereby define an enclosed gas volume configured for GDT operation. Various examples related to such GDTs, including electrode configurations, opening configurations, pre-ionization features, grouping of a GDT with another GDT or device, and packaging configurations, are disclosed.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 28, 2014
    Inventors: John KELLY, Johan SCHLEIMANN-JENSEN, Jan HEATH, Craig Robert SHIPLEY, Gordon L. BOURNS
  • Publication number: 20140077923
    Abstract: Surface-mountable conductive polymer devices include a conductive polymer layer between first and second electrodes, on which are disposed first and second insulation layers, respectively. First and second planar conductive terminals are on the second insulation layer. A first cross-conductor connects the second electrode to the first terminal, and is separated from the first electrode by a portion of the first insulation layer. A second cross-conductor connects the first electrode to the second terminal, and is separated from the second electrode by a portion of the second insulation layer. In some embodiments, at least one cross-conductor includes a beveled portion through the first insulation layer to provide enhanced adhesion between the cross-conductor and the first insulation layer, while allowing greater thermal expansion without undue stress.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 20, 2014
    Applicant: BOURNS, INC.
    Inventors: Gordon L. Bourns, Stelar Chu, Daniel E. Grindell, David Huang, John Kelly, Erik Meijer
  • Patent number: 8542086
    Abstract: Surface-mountable conductive polymer electronic devices include at least one conductive polymer active layer laminated between upper and lower electrodes. Upper and lower insulation layers, respectively, sandwich the upper and lower electrodes. First and second planar conductive terminals are formed on the lower insulation layer. First and second cross-conductors are provided by plated through-hole vias, whereby the cross-conductors connect each of the electrodes to one of the terminals. Certain embodiments include two or more active layers, arranged in a vertically-stacked configuration and electrically connected by the cross-conductors and electrodes in parallel. Several embodiments include at least one cross-conductor having a chamfered or beveled entry hole through the upper insulation layer to provide enhanced adhesion between the cross-conductor and the insulation layer. Several methods for manufacturing the present surface-mountable conductive polymer electronic devices are also provided.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: September 24, 2013
    Assignee: Bourns, Inc.
    Inventors: Gordon L. Bourns, Stelar Chu, Daniel E. Grindell, David Huang, John Kelly, Erik Meijer