Patents by Inventor Gordon M. Grivna

Gordon M. Grivna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230253468
    Abstract: In one general aspect, an apparatus can include a substrate having a semiconductor region, and a trench defined in the semiconductor region and having a sidewall. The apparatus can include a shield electrode disposed in the trench and insulated from the sidewall of the trench by a shield dielectric, the shield dielectric having a low-k dielectric portion and a high-k dielectric portion. The apparatus can include a gate electrode disposed in the trench and at least partially surrounded by a gate dielectric, and an inter-electrode dielectric disposed between the shield electrode and the gate electrode.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 10, 2023
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Zia HOSSAIN, Balaji PADMANABHAN, Christopher Lawrence REXER, Gordon M. GRIVNA, Sauvik CHOWDHURY
  • Patent number: 11670706
    Abstract: In a general aspect, method of producing an insulated-gate bipolar transistor (IGBT) device can include forming a termination structure in an inactive region. The inactive region at least partial surround an active region. The method can also include forming a trench extending along a longitudinal axis in the active region. A first mesa can define a first sidewall of the trench, and a second mesa can define a second sidewall of the trench. The first mesa and the second mesa can be parallel with the trench. The method can further include forming, in at least a portion of the first mesa, an active segment of the IGBT device, and, forming, in at least a portion of the second mesa, an inactive segment of the IGBT device.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: June 6, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Meng-Chia Lee, Ralph N. Wall, Mingjiao Liu, Shamsul Arefin Khan, Gordon M. Grivna
  • Publication number: 20230095014
    Abstract: A semiconductor device includes a work piece comprising a first material, a first side, a second side opposite to the first side, and a first coefficient of thermal expansion (first CTE). Recesses extend into the work piece from the first side and includes a pattern. A second material having a second CTE is within the recesses and is over the first material between the recesses; and A third material having a third CTE is over one of the second side or the second material. The third CTE and the second CTE are different than the first CTE.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. GRIVNA
  • Patent number: 11563091
    Abstract: A semiconductor device includes a substrate comprising a first material, a first major surface, and a second major surface opposite to the first major surface, the first material having a first coefficient of thermal expansion (CTE). A filled recessed structure having recesses extends into the substrate and has a pattern in a plan view. The recesses are spaced apart so that part of the substrate is interposed between each of the recesses, and a second material different than the first material is in the recesses. The second material has a second CTE. A structure is proximate to the first major surface over the filled recessed structure and has a third CTE. The third CTE and the second CTE are different than the first CTE. The filled recessed structure reduces stresses between the substrate and structure. In some examples, the structure comprises a MIM capacitor. In other examples, the structure comprises a heterojunction semiconductor material.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: January 24, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Publication number: 20230020438
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a clamping electrode for electrostatically clamping the work piece to the work piece support; providing a mechanical partition between the plasma source and the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Application
    Filed: September 21, 2022
    Publication date: January 19, 2023
    Applicant: Plasma-Therm LLC
    Inventors: Linnell Martinez, David Pays-Volard, Chris Johnson, David Johnson, Russell Westerman, Gordon M. Grivna
  • Patent number: 11488865
    Abstract: The present invention provides a method for plasma dicing a substrate. The method comprising providing a process chamber having a wall; providing a plasma source adjacent to the wall of the process chamber; providing a work piece support within the process chamber; placing the substrate onto a support film on a frame to form a work piece work piece; loading the work piece onto the work piece support; providing a clamping electrode for electrostatically clamping the work piece to the work piece support; providing a mechanical partition between the plasma source and the work piece; generating a plasma through the plasma source; and etching the work piece through the generated plasma.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: November 1, 2022
    Assignee: Plasma-Therm LLC
    Inventors: Linnell Martinez, David Pays-Volard, Chris Johnson, David Johnson, Russell Westerman, Gordon M. Grivna
  • Publication number: 20220293781
    Abstract: A semiconductor device includes a region of semiconductor material having a first side and a second side opposite to the first side. Active device structures are adjacent to the first side, the active device structures comprising source regions and gate electrodes. A first gate conductor is at the first side electrically connected to the gate electrodes, a drain region is at the second side, a second gate conductor is at the second side, and through-semiconductor vias extending from the first side towards the side and electrically connecting the first gate electrode to the second gate electrode. A source electrode is at the first side electrically connected to the source regions, and a drain electrode is at the second side electrically connected to the drain region. The through-semiconductor vias are electrically isolated from the source regions and the drain region. The structure provides a gate/drain up with a source-down configuration.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. GRIVNA
  • Publication number: 20220277999
    Abstract: A process can be used to allow processing of thin layers of a workpiece including dies. The workpiece can include a base substrate and a plurality of layers overlying the base substrate. The process can include forming a polymer support layer over the plurality of layers; thinning or removing the base substrate within a component region of the workpiece, wherein the component region includes an electronic device; and singulating the workpiece into a plurality of dies after thinning or removing the base substrate. In another aspect, an electronic device can be formed using such process. In an embodiment, the workpiece may have a size corresponding to a semiconductor wafer to allow wafer-level, as opposed to die-level, processing.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. GRIVNA
  • Publication number: 20220271118
    Abstract: An integrated circuit die includes a silicon chromium (SiCr) thin film resistor disposed on a first oxide layer. The SiCr thin film resistor has a resistor body and a resistor head. A second oxide layer overlays the SiCr thin film resistor. The second oxide layer has an opening exposing a surface of the resistor head. A metal pad is disposed in the opening in the second oxide layer and is contact with the surface of the resistor head exposed by the opening. Further, an interlevel dielectric layer is disposed on the second oxide layer overlaying the SiCr thin film resistor. A metal-filled via extends from a top surface of interlevel dielectric layer through the interlevel dielectric layer and contacts the metal pad disposed in the opening in the second oxide layer.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 25, 2022
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Rick Carlton JEROME, Gordon M. GRIVNA, Kevin Alexander STEWART, David T. PRICE, Jeffrey Peter GAMBINO
  • Publication number: 20220262633
    Abstract: A first semiconductor substrate contains a first semiconductor material, such as silicon. A second semiconductor substrate containing a second semiconductor material, such as gallium nitride or aluminum gallium nitride, is formed on the first semiconductor substrate. The first semiconductor substrate and second semiconductor substrate are singulated to provide a semiconductor die including a portion of the second semiconductor material supported by a portion of the first semiconductor material. The semiconductor die is disposed over a die attach area of an interconnect structure. The interconnect structure has a conductive layer and optional active region. An underfill material is deposited between the semiconductor die and die attach area of the interconnect structure. The first semiconductor material is removed from the semiconductor die and the interconnect structure is singulated to separate the semiconductor die. The first semiconductor material can be removed post interconnect structure singulation.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. GRIVNA, Stephen ST. GERMAIN
  • Patent number: 11380788
    Abstract: A semiconductor device includes a region of semiconductor material having a first side and a second side opposite to the first side. Active device structures are adjacent to the first side, the active device structures comprising source regions and gate electrodes. A first gate conductor is at the first side electrically connected to the gate electrodes, a drain region is at the second side, a second gate conductor is at the second side, and through-semiconductor vias extending from the first side towards the side and electrically connecting the first gate electrode to the second gate electrode. A source electrode is at the first side electrically connected to the source regions, and a drain electrode is at the second side electrically connected to the drain region. The through-semiconductor vias are electrically isolated from the source regions and the drain region. The structure provides a gate/drain up with a source-down configuration.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: July 5, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 11367657
    Abstract: A process can be used to allow processing of thin layers of a workpiece including dies. The workpiece can include a base substrate and a plurality of layers overlying the base substrate. The process can include forming a polymer support layer over the plurality of layers; thinning or removing the base substrate within a component region of the workpiece, wherein the component region includes an electronic device; and singulating the workpiece into a plurality of dies after thinning or removing the base substrate. In another aspect, an electronic device can be formed using such process. In an embodiment, the workpiece may have a size corresponding to a semiconductor wafer to allow wafer-level, as opposed to die-level, processing.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: June 21, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 11355341
    Abstract: A first semiconductor substrate contains a first semiconductor material, such as silicon. A second semiconductor substrate containing a second semiconductor material, such as gallium nitride or aluminum gallium nitride, is formed on the first semiconductor substrate. The first semiconductor substrate and second semiconductor substrate are singulated to provide a semiconductor die including a portion of the second semiconductor material supported by a portion of the first semiconductor material. The semiconductor die is disposed over a die attach area of an interconnect structure. The interconnect structure has a conductive layer and optional active region. An underfill material is deposited between the semiconductor die and die attach area of the interconnect structure. The first semiconductor material is removed from the semiconductor die and the interconnect structure is singulated to separate the semiconductor die. The first semiconductor material can be removed post interconnect structure singulation.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 7, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gordon M. Grivna, Stephen St. Germain
  • Publication number: 20220093745
    Abstract: A semiconductor device includes a substrate comprising a first material, a first major surface, and a second major surface opposite to the first major surface, the first material having a first coefficient of thermal expansion (CTE). A filled recessed structure having recesses extends into the substrate and has a pattern in a plan view. The recesses are spaced apart so that part of the substrate is interposed between each of the recesses, and a second material different than the first material is in the recesses. The second material has a second CTE. A structure is proximate to the first major surface over the filled recessed structure and has a third CTE. The third CTE and the second CTE are different than the first CTE. The filled recessed structure reduces stresses between the substrate and structure. In some examples, the structure comprises a MIM capacitor. In other examples, the structure comprises a heterojunction semiconductor material.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 24, 2022
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. GRIVNA
  • Patent number: 11257916
    Abstract: Systems and methods of the disclosed embodiments include an electronic device that has a gate electrode for supplying a gate voltage, a source, a drain, and a channel doped to enable a current to flow from the drain to the source when a voltage is applied to the gate electrode. The electronic device may also include a gate insulator between the channel and the gate electrode. The gate insulator may include a first gate insulator section including a first thickness, and a second gate insulator section including a second thickness that is less than the first thickness. The gate insulator sections thereby improve the safe operating area by enabling the current to flow through the second gate insulator section at a lower voltage than the first gate insulator section.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 22, 2022
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Balaji Padmanabhan, Prasad Venkatraman, Zia Hossain, Donald Zaremba, Gordon M. Grivna, Alexander Young
  • Publication number: 20220020848
    Abstract: In a general aspect, a semiconductor device assembly can include a semiconductor substrate that excludes a buried oxide layer. The semiconductor device assembly can also include a first semiconductor device stack disposed on a first portion of the semiconductor substrate, and a second semiconductor device stack disposed on a second portion of the semiconductor substrate. The semiconductor device assembly can further include an isolation trench having a dielectric material disposed therein, the isolation trench being disposed between the first portion of the semiconductor substrate and the second portion of the semiconductor substrate. The isolation trench can electrically isolate the first portion of the semiconductor substrate from the second portion of the semiconductor substrate.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 20, 2022
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Peter MOENS, Gordon M. GRIVNA, Yusheng LIN
  • Publication number: 20210305096
    Abstract: In a general aspect, a fan-out wafer level package (FOWLP) can include a semiconductor die having an active surface, a backside surface, a plurality of side surfaces, each side surface of the plurality of side surfaces extending between the active surface and the backside surface, a plurality of conductive bumps disposed on the active surface, and an insulating layer disposed on a first portion of the active surface between the conductive bumps. The FOWLP can also include a molding compound encapsulating the backside surface, the plurality of side surfaces, and a second portion of the active surface between the conductive bumps and a perimeter edge of the active surface. The FOWLP can also include a signal distribution structure disposed on the conductive bumps, the insulating layer and the molding compound. The signal distribution structure can be configured to provide respective electrical connections to the plurality of conductive bumps.
    Type: Application
    Filed: June 15, 2021
    Publication date: September 30, 2021
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: George CHANG, Yusheng LIN, Gordon M. GRIVNA, Takashi NOMA
  • Publication number: 20210296176
    Abstract: A method for singulating a semiconductor wafer includes providing the semiconductor wafer having a plurality of semiconductor devices adjacent to a first surface, the plurality of semiconductor devices separated by spaces corresponding to where singulation lines will be formed. The method includes providing an alignment structure adjacent to the first surface and providing a material on a second surface of the semiconductor wafer, wherein the material is absent on the second surface directly below the alignment structure. The method includes passing an IR signal through the semiconductor wafer from the second surface to the first surface where the material is absent to detect the alignment structure and align a singulation device to the spaces where the singulation lines on will be formed.
    Type: Application
    Filed: January 28, 2021
    Publication date: September 23, 2021
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Srinivasa Reddy YEDURU, George CHANG, Gordon M. GRIVNA
  • Publication number: 20210296482
    Abstract: A semiconductor device includes a region of semiconductor material having a first side and a second side opposite to the first side. Active device structures are adjacent to the first side, the active device structures comprising source regions and gate electrodes. A first gate conductor is at the first side electrically connected to the gate electrodes, a drain region is at the second side, a second gate conductor is at the second side, and through-semiconductor vias extending from the first side towards the side and electrically connecting the first gate electrode to the second gate electrode. A source electrode is at the first side electrically connected to the source regions, and a drain electrode is at the second side electrically connected to the drain region. The through-semiconductor vias are electrically isolated from the source regions and the drain region. The structure provides a gate/drain up with a source-down configuration.
    Type: Application
    Filed: October 5, 2020
    Publication date: September 23, 2021
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. GRIVNA
  • Patent number: 11088072
    Abstract: A vertical OTP fuse formed in a semiconductor device has a substrate and an insulating layer formed over the substrate with an opening through the insulating layer extending to the substrate. A conductive layer, such as silicide, is formed over a sidewall of the opening. A resistive material, such as polysilicon, is deposited within the opening over the first conductive layer to form a first vertical OTP fuse. A plurality of vertical OTP fuses can be arranged in an array. A PN junction diode or transistor is formed in the substrate aligned with the first vertical OTP fuse. A second conductive layer is formed over the first vertical OTP fuse. The first vertical OTP fuse can be disposed between the second conductive layer and a third conductive layer. A second vertical OTP fuse can be formed over the first vertical OTP fuse for redundancy.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: August 10, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jefferson W. Hall, Gordon M. Grivna