Patents by Inventor Gordon R. Lambertus

Gordon R. Lambertus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9638681
    Abstract: Accurate, real-time formation fluids analysis can be accomplished using the systems and techniques described herein. A fluid analyzer includes a first mode of analysis, such as an optical analyzer, configured to determine a physical (optical) property of a fluid sample. The fluid analyzer also includes another mode of analysis, such as a composition analyzer, such as a gas chromatograph, configured to determine a component composition of the fluid sample. A data processor is configured to determine a quantity, such as a weight percentage, of a target component of the fluid sample in response results obtained from the first and second modes of analysis. Beneficially, the results are obtained at least in near real-time, allowing for interim results, such as results from the first analyzer to be used for one or more of tuning the compositional analyzer and for implementing quality control.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 2, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Oleg Zhdaneev, Christopher Harrison, Youxiang Zuo, Dingan Zhang, William H. Steinecker, Gordon R. Lambertus, Neil Bostrom
  • Publication number: 20140283593
    Abstract: Advanced remote self-contained chromatographic systems and techniques for analyzing a mixture comprising components having a wide range of boiling points. The chromatographic systems and techniques can utilize components and techniques that allow staged, simultaneous, and/or sequential vaporization of an analyte to facilitate rapid analysis. The chromatographic systems and techniques can also utilize components and techniques that focus eluents from a first separation stage prior to reduce characterization time in subsequent stages.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Inventors: NEIL WILLIAM BOSTROM, ROBERT LEONARD KLEINBERG, KRISTOFER GUNNAR PASO, BHAVANI RAGHURAMAN, GORDON R. LAMBERTUS
  • Patent number: 8778059
    Abstract: Methods and related systems are described for improving component separations in chromatography through novel techniques. The improvements in separation is due primarily to the provision of differential acceleration of the components being separated. Various systems and methods for providing differential acceleration are described including: increasing the cross section of the column towards the column outlet, changing the thickness or other composition of stationary phase within the column, and providing a temperature and/or mobile phase velocity gradient along the column.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: July 15, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: William H. Steinecker, Jagdish Shah, Oleg Zhdaneev, Gordon R. Lambertus, Hua Chen
  • Patent number: 8512457
    Abstract: Methods and related systems are described for improving component separations in chromatography through novel techniques. The improvements in separation is due primarily to the provision of differential acceleration of the components being separated. Various systems and methods for providing differential acceleration are described including: increasing the cross section of the column towards the column outlet, changing the thickness or other composition of stationary phase within the column, and providing a temperature and/or mobile phase velocity gradient along the column.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: August 20, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: William H. Steinecker, Jagdish Shah, Oleg Zhdaneev, Gordon R. Lambertus, Hua Chen
  • Publication number: 20130085674
    Abstract: Accurate, real-time formation fluids analysis can be accomplished using the systems and techniques described herein. A fluid analyzer includes a first mode of analysis, such as an optical analyzer, configured to determine a physical (optical) property of a fluid sample. The fluid analyzer also includes another mode of analysis, such as a composition analyzer, such as a gas chromatographer, configured to determine an elemental composition of the fluid sample. A data processor is configured to determine a quantity, such as a weight percentage, of a target component of the fluid sample in response results obtained from the first and second modes of analysis. Beneficially, the results are obtained at least in near real-time, allowing for interim results, such as results from the first analyzer to be used for one or more of tuning the compositional analyzer and for implementing quality control.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Oleg Zhdaneev, Christopher Harrison, Youxiang Zuo, Dingan Zhang, William H. Steinecker, Gordon R. Lambertus, Neil Bostrom
  • Publication number: 20120048108
    Abstract: Methods and related systems are described for improving component separations in chromatography through novel techniques. The improvements in separation is due primarily to the provision of differential acceleration of the components being separated. Various systems and methods for providing differential acceleration are described including: increasing the cross section of the column towards the column outlet, changing the thickness or other composition of stationary phase within the column, and providing a temperature and/or mobile phase velocity gradient along the column.
    Type: Application
    Filed: November 7, 2011
    Publication date: March 1, 2012
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: William H. Steinecker, Jagdish Shah, Oleg Zhdaneev, Gordon R. Lambertus, Hua Chen
  • Publication number: 20090158820
    Abstract: Advanced remote self-contained chromatographic systems and techniques for analyzing a mixture comprising components having a wide range of boiling points. The chromatographic systems and techniques can utilize components and techniques that allow staged, simultaneous, and/or sequential vaporization of an analyte to facilitate rapid analysis. The chromatographic systems and techniques can also utilize components and techniques that focus eluents from a first separation stage prior to reduce characterization time in subsequent stages.
    Type: Application
    Filed: October 9, 2008
    Publication date: June 25, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Neil William Bostrom, Robert Leonard Kleinberg, Kristofer Gunnar Paso, Bhavani Raghuraman, Gordon R. Lambertus
  • Publication number: 20090139934
    Abstract: Methods and related systems are described for improving component separations in chromatography through novel techniques. The improvements in separation is due primarily to the provision of differential acceleration of the components being separated. Various systems and methods for providing differential acceleration are described including: increasing the cross section of the column towards the column outlet, changing the thickness or other composition of stationary phase within the column, and providing a temperature and/or mobile phase velocity gradient along the column.
    Type: Application
    Filed: December 3, 2007
    Publication date: June 4, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: William H. Steinecker, Jagdish Shah, Oleg Zhdaneev, Gordon R. Lambertus, Hua Chen