Patents by Inventor Gorun Butail
Gorun Butail has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11549175Abstract: Provided herein are methods and apparatuses for filling features metal-containing materials. One aspect of the disclosure relates to a method for filling structures with a metal-containing material, the method including: providing a structure to be filled with a metal-containing material, exposing the structure to multiple deposition cycles, with each deposition cycle including exposure to one or more alternating reducing agent (e.g. hydrogen (H2)) dose/inert gas purge pulses pulse followed by exposure to one or more alternating metal precursor dose pulses and inert gas purge pulses. The metal may be tungsten (W) or molybdenum (Mo) in some embodiments. In some embodiments, the structure is a partially fabricated (3-D) NAND structure. Apparatuses to perform the methods are also provided.Type: GrantFiled: May 3, 2019Date of Patent: January 10, 2023Assignee: Lam Research CorporationInventors: Gorun Butail, Joshua Collins, Hanna Bamnolker, Seshasayee Varadarajan
-
Publication number: 20220389579Abstract: Provided herein are methods and apparatus for deposition of pure metal films. The methods involve the use of oxygen-containing precursors. The metals include molybdenum (Mo) and tungsten (W). To deposit pure films with no more than one atomic percentage oxygen, the reducing agent to metal precursor ratio is significantly greater than 1. Molar ratios of 100:1 to 10000:1 may be used in some embodiments.Type: ApplicationFiled: July 21, 2022Publication date: December 8, 2022Inventors: Shruti Vivek THOMBARE, Gorun BUTAIL, Patrick A. VAN CLEEMPUT, Ilanit FISHER
-
Publication number: 20220290300Abstract: Various showerheads and methods are provided. A showerhead may include a faceplate partially defined by a front surface and a back surface, a back plate having a gas inlet, a first conical frustum surface, and a second conical frustum surface, a plenum volume fluidically connected to the gas inlet and at least partially defined by the gas inlet, the back surface of the faceplate, the first conical frustum surface, and the second conical frustum surface, and a baffle plate positioned within the plenum volume, and having a plurality of baffle plate through-holes extending through the baffle plate. The second conical frustum surface may be positioned radially outwards from the first conical frustum surface with respect to a center axis of the showerhead, and the second conical frustum surface may be positioned along the center axis farther from the gas inlet than the first conical frustum surface.Type: ApplicationFiled: August 19, 2020Publication date: September 15, 2022Inventors: Ravi Vellanki, Eric H. Lenz, Vinayakaraddy Gulabal, Sanjay Gopinath, Michal Danek, Prodyut Majumder, Novy Tjokro, Yen-Chang Chen, Shruti Vivek Thombare, Gorun Butail, Patrick A. van Cleemput
-
Publication number: 20220223471Abstract: Provided herein are low resistance metallization stack structures for logic and memory applications and related methods of fabrication. In some implementations, the methods involve providing a tungsten (W)-containing layer on a substrate; and depositing a molybdenum (Mo)-containing layer on the W-containing layer. In some implementations, the methods involve depositing a Mo-containing layer directly on a dielectric or titanium nitride (TiN) substrate without an intervening W-containing layer.Type: ApplicationFiled: January 31, 2022Publication date: July 14, 2022Inventors: Shruti Vivek THOMBARE, Raashina HUMAYUN, Michal DANEK, Chiukin Steven LAI, Joshua COLLINS, Hanna BAMNOLKER, Griffin John KENNEDY, Gorun BUTAIL, Patrick A. van Cleemput
-
Publication number: 20220028864Abstract: A method for reducing bending of word lines in a memory cell includes a) providing a substrate including a plurality of word lines arranged adjacent to one another and above a plurality of transistors; b) depositing a layer of film on the plurality of word lines using a deposition process; c) after depositing the layer of film, measuring word line bending; d) comparing the word line bending to a predetermined range; e) based on the word line bending, adjusting at least one of nucleation delay and grain size of the deposition process; and f) repeating b) to e) one or more times using one or more substrates, respectively, until the word line bending is within the predetermined range.Type: ApplicationFiled: November 25, 2019Publication date: January 27, 2022Inventors: Gorun BUTAIL, Shruti THOMBARE, Ishtak KARIM, Patrick VAN CLEEMPUT
-
Publication number: 20210238736Abstract: Provided herein are methods and apparatuses for filling features metal-containing materials. One aspect of the disclosure relates to a method for filling structures with a metal-containing material, the method including: providing a structure to be filled with a metal-containing material, exposing the structure to multiple deposition cycles, with each deposition cycle including exposure to one or more alternating reducing agent (e.g. hydrogen (H2)) dose/inert gas purge pulses pulse followed by exposure to one or more alternating metal precursor dose pulses and inert gas purge pulses. The metal may be tungsten (W) or molybdenum (Mo) in some embodiments. In some embodiments, the structure is a partially fabricated (3-D) NAND structure. Apparatuses to perform the methods are also provided.Type: ApplicationFiled: May 3, 2019Publication date: August 5, 2021Inventors: Gorun Butail, Joshua Collins, Hanna Bamnolker, Seshasayee Varadarajan
-
Publication number: 20210140043Abstract: Provided herein are methods and apparatus for deposition of pure metal films. The methods involve the use of oxygen-containing precursors. The metals include molybdenum (Mo) and tungsten (W). To deposit pure films with no more than one atomic percentage oxygen, the reducing agent to metal precursor ratio is significantly greater than 1. Molar ratios of 100:1 to 10000:1 may be used in some embodiments.Type: ApplicationFiled: July 25, 2019Publication date: May 13, 2021Inventors: Shruti Vivek Thombare, Gorun Butail, Patrick A. van Cleemput, Ilanit Fisher
-
Publication number: 20200402846Abstract: Provided herein are methods and apparatuses for forming metal films such as tungsten (W) and molybdenum (Mo) films on semiconductor substrates. The methods involve forming a reducing agent layer, then exposing the reducing agent layer to a metal precursor to convert the reducing agent layer to a layer of the metal. In some embodiments, the reducing agent layer is a silicon- (Si-) and boron- (B-) containing layer. The methods may involve forming the reducing agent layer at a first substrate temperature, raising the substrate temperature to a second substrate temperature, and then exposing the reducing agent layer to the metal precursor at the second substrate temperature. The methods may be used to form fluorine-free tungsten or molybdenum films in certain embodiments. Apparatuses to perform the methods are also provided.Type: ApplicationFiled: November 19, 2018Publication date: December 24, 2020Applicant: Lam Research CorporationInventors: Joshua Collins, Griffin John Kennedy, Hanna Bamnolker, Michal Danek, Shruti Vivek Thombare, Patrick van Cleemput, Gorun Butail
-
Publication number: 20200365456Abstract: Provided herein are low resistance metallization stack structures for logic and memory applications and related methods of fabrication. In some implementations, the methods involve providing a tungsten (W)-containing layer on a substrate; and depositing a molybdenum (Mo)-containing layer on the W-containing layer. In some implementations, the methods involve depositing a Mo-containing layer directly on a dielectric or titanium nitride (TiN) substrate without an intervening W-containing layer.Type: ApplicationFiled: July 27, 2020Publication date: November 19, 2020Inventors: Shruti Vivek Thombare, Raashina Humayun, Michal Danek, Chiukin Steven Lai, Joshua Collins, Hanna Bamnolker, Griffin John Kennedy, Gorun Butail, Patrick van Cleemput
-
Patent number: 10777453Abstract: Provided herein are low resistance metallization stack structures for logic and memory applications and related methods of fabrication. In some implementations, the methods involve providing a tungsten (W)-containing layer on a substrate; and depositing a molybdenum (Mo)-containing layer on the W-containing layer. In some implementations, the methods involve depositing a Mo-containing layer directly on a dielectric or titanium nitride (TiN) substrate without an intervening W-containing layer.Type: GrantFiled: November 6, 2019Date of Patent: September 15, 2020Assignee: Lam Research CorporationInventors: Shruti Vivek Thombare, Raashina Humayun, Michal Danek, Chiukin Steven Lai, Joshua Collins, Hanna Bamnolker, Griffin John Kennedy, Gorun Butail, Patrick A. van Cleemput
-
Publication number: 20200075403Abstract: Provided herein are low resistance metallization stack structures for logic and memory applications and related methods of fabrication. In some implementations, the methods involve providing a tungsten (W)-containing layer on a substrate; and depositing a molybdenum (Mo)-containing layer on the W-containing layer. In some implementations, the methods involve depositing a Mo-containing layer directly on a dielectric or titanium nitride (TiN) substrate without an intervening W-containing layer.Type: ApplicationFiled: November 6, 2019Publication date: March 5, 2020Inventors: Shruti Vivek Thombare, Raashina Humayun, Michal Danek, Chiukin Steven Lai, Joshua Collins, Hanna Bamnolker, Griffin John Kennedy, Gorun Butail, Patrick A. van Cleemput
-
Patent number: 10510590Abstract: Provided herein are low resistance metallization stack structures for logic and memory applications and related methods of fabrication. In some implementations, the methods involve providing a tungsten (W)-containing layer on a substrate; and depositing a molybdenum (Mo)-containing layer on the W-containing layer. In some implementations, the methods involve depositing a Mo-containing layer directly on a dielectric or titanium nitride (TiN) substrate without an intervening W-containing layer.Type: GrantFiled: April 9, 2018Date of Patent: December 17, 2019Assignee: Lam Research CorporationInventors: Shruti Vivek Thombare, Raashina Humayun, Michal Danek, Chiukin Steven Lai, Joshua Collins, Hanna Bamnolker, Griffin John Kennedy, Gorun Butail, Patrick A. van Cleemput
-
Publication number: 20180294187Abstract: Provided herein are low resistance metallization stack structures for logic and memory applications and related methods of fabrication. In some implementations, the methods involve providing a tungsten (W)-containing layer on a substrate; and depositing a molybdenum (Mo)-containing layer on the W-containing layer. In some implementations, the methods involve depositing a Mo-containing layer directly on a dielectric or titanium nitride (TiN) substrate without an intervening W-containing layer.Type: ApplicationFiled: April 9, 2018Publication date: October 11, 2018Inventors: Shruti Vivek Thombare, Raashina Humayun, Michal Danek, Chiukin Steven Lai, Joshua Collins, Hanna Bamnolker, Griffin John Kennedy, Gorun Butail, Patrick A. van Cleemput