Patents by Inventor Gothami Padmabandu
Gothami Padmabandu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230122742Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.Type: ApplicationFiled: October 28, 2022Publication date: April 20, 2023Inventors: Gordon A. JANAWAY, Mark ANDERSEN, Kornelija ZGONC, Michael C. PALLAS, Marcin SIKORA, Casey R. McFARLAND, Ferrier N. LE, Haopeng Wang, Jian GONG, Gothami Padmabandu
-
Publication number: 20200224280Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.Type: ApplicationFiled: January 13, 2020Publication date: July 16, 2020Inventors: Gordon A. JANAWAY, Mark ANDERSEN, Kornelija ZGONC, Michael C. PALLAS, Marcin SIKORA, Casey R. McFARLAND, Ferrier N. LE, Haopeng Wang, Jian GONG, Gothami Padmabandu
-
Patent number: 10557174Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.Type: GrantFiled: March 25, 2016Date of Patent: February 11, 2020Assignee: Life Technologies CorporationInventors: Gordon A. Janaway, Mark Andersen, Kornelija Zgonc, Michael C. Pallas, Marcin Sikora, Casey R. McFarland, Ferrier N. Le, Haopeng Wang, Jian Gong, Gothami Padmabandu
-
Publication number: 20160208342Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.Type: ApplicationFiled: March 25, 2016Publication date: July 21, 2016Inventors: Gordon A. Janaway, Mark Andersen, Kornelija Zgonc, Michael C. Pallas, Marcin Sikora, Casey R. McFarland, Ferrier N. Le, Haopeng Wang, Jian Gong, Gothami Padmabandu
-
Patent number: 9322055Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.Type: GrantFiled: March 30, 2012Date of Patent: April 26, 2016Assignee: Life Technologies CorporationInventors: Gordon A. Janaway, Mark Andersen, Kornelija Zgonc, Michael Pallas, Marcin Sikora, Casey McFarland, Ferrier N. Le, Haopeng Wang, Jian Gong, Gothami Padmabandu
-
Patent number: 9150896Abstract: Provided herein is a method of amplifying nucleic acids using a plurality of modified nucleotides one or more of the nucleotides comprising a 3? blocking group. Also provided is a method of amplifying nucleic acids using oligonucleotide primers one or both of the primers comprising a 3? blocking group on one or more of the nucleotides of the primers.Type: GrantFiled: March 1, 2013Date of Patent: October 6, 2015Assignee: Illumina, Inc.Inventors: Cheng-Yao Chen, Gothami Padmabandu
-
Publication number: 20140248623Abstract: Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample.Type: ApplicationFiled: March 30, 2012Publication date: September 4, 2014Applicant: LIFE TECHNOLOGIES CORPORATIONInventors: Gordon A. Janaway, Mark Andersen, Kornelija Zgonc, Michael Pallas, Marcin Sikora, Casey McFarland, Ferrier N. Le, Haopeng Wang, Jian Gong, Gothami Padmabandu
-
Publication number: 20140065675Abstract: Provided herein is a method of amplifying nucleic acids using a plurality of modified nucleotides one or more of the nucleotides comprising a 3? blocking group. Also provided is a method of amplifying nucleic acids using oligonucleotide primers one or both of the primers comprising a 3? blocking group on one or more of the nucleotides of the primers.Type: ApplicationFiled: March 1, 2013Publication date: March 6, 2014Applicant: ILLUMINA, INC.Inventors: Cheng-Yao Chen, Gothami Padmabandu
-
Patent number: 8283148Abstract: The invention relates to the generation and characterization of Archaeal DNA polymerase mutants with deficient 3?-5? exonuclease activity and reduced base analog detection activity. The invention further provides for Archaeal DNA polymerase mutants with deficient 3?-5? exonuclease activity and reduced base analog detection activity containing additional mutations that modulate other DNA polymerase activities including DNA polymerization or reverse transcriptase activity. The invention also discloses methods and applications of DNA polymerases with deficient 3?-5? exonuclease activity and reduced base analog detection activity.Type: GrantFiled: December 12, 2003Date of Patent: October 9, 2012Assignee: Agilent Technologies, Inc.Inventors: Joseph A. Sorge, Reinhold Dietrich Mueller, Gothami Padmabandu, Nick Roelofs, Holly H. Hogrefe
-
Patent number: 7361469Abstract: The present invention relates to probes useful for the detection and measurement of target nucleic acids, as well as compositions and kits containing such probes. The probes of the present invention include an interactive pair of labels, as well as a hairpin sequence that does not hybridize to a target nucleic acid. According to the present invention, the probe generates a detectable signal indicative of a presence of a target nucleic acid. The detectable signal emitted by one of the pair of labels is substantially constant upon binding of the probe to target nucleic acid, and the detectable signal increases by at least 2 fold upon cleavage of the probe between the pair of labels.Type: GrantFiled: August 12, 2005Date of Patent: April 22, 2008Assignee: Stratagene CaliforniaInventors: Joseph A. Sorge, Reinhold Mueller, Gothami Padmabandu
-
Publication number: 20060088856Abstract: The present invention relates to probes useful for the detection and measurement of target nucleic acids, as well as compositions and kits containing such probes. The probes of the present invention include an interactive pair of labels, as well as a hairpin sequence that does not hybridize to a target nucleic acid. According to the present invention, the probe generates a detectable signal indicative of a presence of a target nucleic acid. The detectable signal emitted by one of the pair of labels is substantially constant upon binding of the probe to target nucleic acid, and the detectable signal increases by at least 2 fold upon cleavage of the probe between the pair of labels.Type: ApplicationFiled: August 12, 2005Publication date: April 27, 2006Inventors: Joseph Sorge, Reinhold Mueller, Gothami Padmabandu
-
Publication number: 20050250112Abstract: The invention relates to nucleic acids, methods, compositions, and kits for the PCR-based detection of Mycoplasma and Acholeplasma bacterial species. The nucleic acids, methods, compositions, and kits provide for increased specificity and sensitivity of PCR-based Mycoplasma bacterial assays. Primer sets and PCR-based assays are provided that amplify and detect conserved 16S rRNA gene sequences from multiple Mycoplasma and Acholeplasma species while avoiding amplification and detection of non-target sequences.Type: ApplicationFiled: May 7, 2004Publication date: November 10, 2005Inventors: Gothami Padmabandu, Fatemeh Salehi, Peter Pingerelli, Reinhold Mueller
-
Publication number: 20050069908Abstract: The invention relates to the generation and characterization of Archaeal DNA polymerase mutants with deficient 3?-5? exonuclease activity and reduced base analog detection activity. The invention further provides for Archaeal DNA polymerase mutants with deficient 3?-5? exonuclease activity and reduced base analog detection activity containing additional mutations that modulate other DNA polymerase activities including DNA polymerization or reverse transcriptase activity. The invention also discloses methods and applications of DNA polymerases with deficient 3?-5? exonuclease activity and reduced base analog detection activity.Type: ApplicationFiled: December 12, 2003Publication date: March 31, 2005Inventors: Joseph Sorge, Reinhold Mueller, Gothami Padmabandu, Nick Roelofs, Holly Hogrefe