Patents by Inventor Gottipaty Rao

Gottipaty Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180306713
    Abstract: A highly sensitive trace gas sensor based on Cavity Ring-down Spectroscopy (CRDS) makes use of a high power, multi-mode Fabry-Perot (FP) semiconductor laser with a broad wavelength range to excite a large number of cavity modes and multiple molecular transitions, thereby reducing the detector's susceptibility to vibration and making it well suited for field deployment. The laser beam is aligned on-axis to the cavity, improving the signal-noise-ratio while maintaining its vibration insensitivity. The use of a FP semiconductor laser has the added advantages of being inexpensive, compact and insensitive to vibration. The technique is demonstrated using a laser with an output power of at least 200 mW, preferably over 1.0 Watt, (?=400 nm) to measure low concentrations of Nitrogen Dioxide (NO2) in zero air. For single-shot detection, 530 ppt sensitivity is demonstrated with a measurement time of 60 ?s which allows for sensitive measurements with high temporal resolution.
    Type: Application
    Filed: April 23, 2018
    Publication date: October 25, 2018
    Inventors: Gottipaty Rao, Andreas Karpf
  • Publication number: 20170356842
    Abstract: A highly sensitive trace gas sensor based on a Fabry-Perot semiconductor laser and cavity enhanced absorption spectroscopy is designed to be capable of measuring sub-ppb concentrations of trace gases in real time. The broad frequency range of the multi-mode Fabry-Perot semiconductor laser spans a large number of absorption lines of the species of interest enabling multiple line integrated absorption spectroscopy which improves the sensitivity of detection. Additionally, the broad wavelength range of the laser excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration and thermal fluctuations making it suitable for field based monitoring applications. Using a high finesse optical cavity also enhances the sensitivity of the sensor by providing large path lengths, on the order of kilometers, in a small volume. Relatively high laser power is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 14, 2017
    Inventors: Gottipaty Rao, Andreas Karpf
  • Patent number: 8395777
    Abstract: An apparatus and technique are invented that enhance the sensitivity of a spectrometer for trace gas detection by employing wavelength modulation spectroscopy (WMS) and integrating the absolute value of the recorded spectra across multiple absorption lines (features) of the species. The sensitivity is further enhanced by conducting WMS with large modulation depths. This technique is implemented using a continuously tunable external cavity CW quantum cascade laser to record the second harmonic wavelength modulated spectra of NO2 across the peak of the R-branch from 1629.5 cm?1 to 1633.9 cm?1. By integrating the absolute value of the resulting spectra, the detection sensitivity of NO2 is improved by a factor of 40 compared to the sensitivity achieved using single line WMS with the same apparatus. A sensitivity of approximately 6 ppb can be obtained using a short-path cell (a 1 m absorption cell with 2 passes) which can be significantly improved using multipass cells and cavity enhanced techniques.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 12, 2013
    Assignee: Adelphi University
    Inventor: Gottipaty Rao
  • Patent number: 8264690
    Abstract: An apparatus and method are used to enhance the sensitivity of a spectrometer (sensor) for trace gas species detection by employing an external cavity continuously tunable CW quantum cascade laser and integrating the absorption spectra across multiple lines of the species. With this method the absorption spectra of NO2 is continuously recorded across the R-branch from 1628.8 cm?1 to 1634.5 cm?1. By integrating the resulting spectra, the detection sensitivity for NO2 is improved by a factor of 15 compared to the sensitivity achieved using single line laser absorption spectroscopy with the same apparatus. This procedure offers much shorter data acquisition times for the real-time monitoring of trace gas species compared with adding repeated scans of the spectra to improve the signal-to-noise ratio.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: September 11, 2012
    Assignee: Adelphi University
    Inventor: Gottipaty Rao
  • Publication number: 20120170043
    Abstract: A sensor with high sensitivity and selectivity for the detection of NO2 uses a simple diode laser operating nominally at 405 nm in the visible region, a high finesse optical cavity and a low noise photon detector. The sensor employs the multimode broad output of the diode laser with the high finesse optical cavity in an essentially off-axis arrangement that can provide large path lengths of the order of a km in a small volume cell. The detected absorption signal corresponds to multiple line integrated absorption spectroscopy (MLIS). Because the sensor uses visible radiation it can employ optics in the visible region that are normally less expensive. Also, the sensor is free from interference from atmospheric water vapor which is often a severe problem for sensors based on mid-infrared quantum cascade lasers operating in the mid-infrared (for example 1650 cm?1) region.
    Type: Application
    Filed: February 10, 2012
    Publication date: July 5, 2012
    Applicant: Adelphi University
    Inventor: Gottipaty Rao
  • Publication number: 20120113426
    Abstract: An apparatus and technique are invented that enhance the sensitivity of a spectrometer for trace gas detection by employing wavelength modulation spectroscopy (WMS) and integrating the absolute value of the recorded spectra across multiple absorption lines (features) of the species. The sensitivity is further enhanced by conducting WMS with large modulation depths. This technique is implemented using a continuously tunable external cavity CW quantum cascade laser to record the second harmonic wavelength modulated spectra of NO2 across the peak of the R-branch from 1629.5 cm?1 to 1633.9 cm?1. By integrating the absolute value of the resulting spectra, the detection sensitivity of NO2 is improved by a factor of 40 compared to the sensitivity achieved using single line WMS with the same apparatus. A sensitivity of approximately 6 ppb can be obtained using a short-path cell (a 1 m absorption cell with 2 passes) which can be significantly improved using multipass cells and cavity enhanced techniques.
    Type: Application
    Filed: February 11, 2011
    Publication date: May 10, 2012
    Applicant: Adelphi University
    Inventor: Gottipaty Rao
  • Patent number: 8149407
    Abstract: A sensor for NO2 with ultrahigh sensitivity of detection is created by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several km in a small volume cell) with multiple line integrated absorption spectroscopy (MLIAS) (where the absorption spectra is integrated over a large number of rotational-vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity tunable quantum cascade laser operating in the 1601-1670 cm?1 range and a high finesse optical cavity, the absorption spectra of NO2 over 100 transitions in the R-band have been recorded. Based on the observed linear relationship between the integrated absorption vs. concentration of NO2, the sensor has an effective sensitivity of detection of 28 ppt for NO2, which is among the most sensitive levels of detection of NO2 to date.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 3, 2012
    Assignee: Adelphi University
    Inventor: Gottipaty Rao
  • Publication number: 20120062895
    Abstract: An apparatus and method are used to enhance the sensitivity of a spectrometer (sensor) for trace gas species detection by employing an external cavity continuously tunable CW quantum cascade laser and integrating the absorption spectra across multiple lines of the species. With this method the absorption spectra of NO2 is continuously recorded across the R-branch from 1628.8 cm?1 to 1634.5 cm?1. By integrating the resulting spectra, the detection sensitivity for NO2 is improved by a factor of 15 compared to the sensitivity achieved using single line laser absorption spectroscopy with the same apparatus. This procedure offers much shorter data acquisition times for the real-time monitoring of trace gas species compared with adding repeated scans of the spectra to improve the signal-to-noise ratio.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: Adelphi University
    Inventor: Gottipaty Rao