Patents by Inventor Gottlieb S. Oehrlein

Gottlieb S. Oehrlein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230059730
    Abstract: Systems, methods, and apparatuses for atomic-scale materials processing based on electron beam induced etching assisted by remote plasma are disclosed. For example, a method may include placing the substrate into a low-pressure chamber to which an electron source is connected. The method may also include contacting the surface of the substrate with reactive particle fluxes produced by a remote plasma source connected to the low-pressure chamber. The remote plasma source may be fed with one or more chemical precursors for surface chemical functionalization of the surface of the substrate. The method may further include electron irradiation of the surface of the substrate with electrons via the electron source at a specified energy level to induce a surface chemical process on the surface of the substrate.
    Type: Application
    Filed: August 19, 2022
    Publication date: February 23, 2023
    Inventors: Gottlieb S. OEHRLEIN, Kang-Yi LIN
  • Patent number: 11171013
    Abstract: Provided is a method of selectively etching a substrate comprising at least one cycle of: depositing a chemical precursor on a surface of the substrate to form a chemical precursor layer on the substrate, the substrate comprising a first portion and a second portion, wherein the first and the second portion are of a different composition; selectively removing the chemical precursor layer and at least a part of the first portion of the substrate; and repeating the cycle until the first portion of the substrate is substantially or completely removed, wherein deposition of the chemical precursor and selective removal of the chemical precursor layer and at least a part of the first portion of the substrate are performed under a plasma environment.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: November 9, 2021
    Assignee: University of Maryland, College Park
    Inventors: Gottlieb S. Oehrlein, Kang-Yi Lin, Chen Li
  • Publication number: 20200335352
    Abstract: Provided is a method of selectively etching a substrate comprising at least one cycle of: depositing a chemical precursor on a surface of the substrate to form a chemical precursor layer on the substrate, the substrate comprising a first portion and a second portion, wherein the first and the second portion are of a different composition; selectively removing the chemical precursor layer and at least a part of the first portion of the substrate; and repeating the cycle until the first portion of the substrate is substantially or completely removed. wherein deposition of the chemical precursor and selective removal of the chemical precursor layer and at least a part of the first portion of the substrate are performed under a plasma environment.
    Type: Application
    Filed: April 22, 2019
    Publication date: October 22, 2020
    Inventors: Gottlieb S. Oehrlein, Kang-Yi Lin, Chen Li
  • Patent number: 10790157
    Abstract: Provided is a method of selectively etching a substrate including at least one cycle of: depositing a chemical precursor on a surface of the substrate, the substrate including a first portion and a second portion, to selectively form a chemical precursor layer on a surface of the first portion of the substrate without forming or substantially without forming the chemical precursor layer on a surface of the second portion of the substrate, wherein the first portion of the substrate and the second portion of the substrate are of different composition; exposing the chemical precursor layer on the surface of the first portion of the substrate and the surface of the second portion of the substrate to a plasma environment subjected to a bias power; and selectively and in a self-limited fashion removing at least a part of the second portion of the substrate, and repeating the cycle until the second portion of the substrate is substantially or completely removed.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: September 29, 2020
    Assignee: University of Maryland, College Park
    Inventors: Gottlieb S. Oehrlein, Kang-Yi Lin, Chen Li
  • Patent number: 9620382
    Abstract: Plasma-based atomic layer etching of materials may be of benefit to various semiconductor manufacturing and related technologies. For example, plasma-based atomic layer etching of materials may be beneficial for adding and/or removing angstrom thick layers from a surface in advanced semiconductor manufacturing and related technologies that increasingly demand atomistic surface engineering. A method may include depositing a controlled amount of a chemical precursor on an unmodified surface layer of a substrate to create a chemical precursor layer and a modified surface layer. The method may also include selectively removing a portion of the chemical precursor layer, a portion of the modified surface layer and a controlled portion of the substrate. Further, the controlled portion may be removed to a depth ranging from about 1/10 of an angstrom to about 1 nm. Additionally, the deposition and selective removal may be performed under a plasma environment.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: April 11, 2017
    Assignee: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Gottlieb S. Oehrlein, Dominik Metzler
  • Publication number: 20150162168
    Abstract: Plasma-based atomic layer etching of materials may be of benefit to various semiconductor manufacturing and related technologies. For example, plasma-based atomic layer etching of materials may be beneficial for adding and/or removing angstrom thick layers from a surface in advanced semiconductor manufacturing and related technologies that increasingly demand atomistic surface engineering. A method may include depositing a controlled amount of a chemical precursor on an unmodified surface layer of a substrate to create a chemical precursor layer and a modified surface layer. The method may also include selectively removing a portion of the chemical precursor layer, a portion of the modified surface layer and a controlled portion of the substrate. Further, the controlled portion may be removed to a depth ranging from about 1/10 of an angstrom to about 1 nm. Additionally, the deposition and selective removal may be performed under a plasma environment.
    Type: Application
    Filed: December 8, 2014
    Publication date: June 11, 2015
    Inventors: Gottlieb S. OEHRLEIN, Dominik METZLER
  • Patent number: 7470329
    Abstract: A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: December 30, 2008
    Assignee: University of Maryland
    Inventors: Gottlieb S. Oehrlein, Xuefeng Hua, Christian Stolz
  • Patent number: 6060400
    Abstract: A dry etch process is described for removing silicon nitride masks from silicon dioxide or silicon for use in a semiconductor fabrication process. A remote plasma oxygen/nitrogen discharge is employed with small additions of a fluorine source. The gas mixture is controlled so that atomic fluorine within the reaction chamber is maintained at very low flows compared with the oxygen and nitrogen reactants. Parameters are controlled so that an oxidized reactive layer is formed above any exposed silicon within a matter of seconds from initiating etching of the silicon nitride. Etch rates of silicon nitride to silicon of greater than 30:1 are described, as well as etch rates of silicon nitride to silicon dioxide of greater than 70:1.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: May 9, 2000
    Assignee: The Research Foundation of State University of New York
    Inventors: Gottlieb S. Oehrlein, Bernd Kastenmeier, Peter Matsuo
  • Patent number: 5637237
    Abstract: The present invention relates to a method and apparatus for etching semiconductor devices where the undesirable deposition of films on the internal surfaces of the apparatus are prevented during the etching process. The system for etching devices provides an etching chamber having a deposition resistant surface, a holder for holding the device to be etched, and a heater for heating the deposition resistant surface to a temperature between 100 C to 600 C to impede the formation of films on the walls of the chamber. The etching system may further include the deposition resistant surface surrounding the holder while not interfering with the plasma used to etch the substrate.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 10, 1997
    Assignee: International Business Machines Corporation
    Inventors: Gottlieb S. Oehrlein, David Vender, Ying Zhang, Marco Haverlag
  • Patent number: 5549935
    Abstract: The adhesion between a polymeric fluorocarbon film and a substrate is improved by providing a thin layer of silicon or a silicide intermediate between the substrate and the polymeric fluorocarbon film, such that a region containing a high density of Si-C bonds is formed.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: August 27, 1996
    Assignee: International Business Machines Corporation
    Inventors: Thao N. Nguyen, Gottlieb S. Oehrlein, Zeev A. Weinberg
  • Patent number: 5395769
    Abstract: The present invention is a structure and method for controlling the depth of an etching process. In particular, the method and structure of the present invention creates a marker layer which resides between a layer to be etched and a protected layer. The marker layer is detected during the etch process and the etch process is controlled based on the detection of the marker layer. The marker layer has physical characteristics which are very similar to the layers being etched or protected. The marker layer has a similar lattice constant and electrical behavior to either the etched layer or the protected layer. The marker layer has very different optical properties from the etched or protected layers so that even a thin marker layer can be easily detected using in-situ ellipsometric measurements. A specific embodiment of the present invention is a layer of SiGe interposed between a thick silicon layer and a thin silicon layer.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: March 7, 1995
    Assignee: International Business Machines Corporation
    Inventors: Maurizio Arienzo, David L. Harame, Gottlieb S. Oehrlein
  • Patent number: 5302420
    Abstract: Polymeric fluorocarbon layer is prepared by plasma enhanced chemical vapor deposition in a chamber, the walls of which are coated with a polymeric fluorocarbon film by introducing a gaseous polymerizable fluorocarbon into the chamber and applying radio-frequency at a power level of about 100 to about 1000 watts, employing a pressure of about 10 to 180 mTorr and a self-bias voltage of about -50 to about -700 volts. The polymeric fluorocarbon layer is about 0.05 to about 5 .mu.m thick, has a maximum dielectric constant of about 2.5, has a C/F ratio of about 1:1 to about 1:3, is thermally stable at temperatures of at least about 350.degree. C., and is substantially free from metallic contamination and oxygen.
    Type: Grant
    Filed: July 9, 1993
    Date of Patent: April 12, 1994
    Assignee: International Business Machines Corporation
    Inventors: Thao N. Nguyen, Gottlieb S. Oehrlein, Zeev A. Weinberg
  • Patent number: 5244730
    Abstract: Polymeric fluorocarbon layer is prepared by plasma enhanced chemical vapor deposition in a chamber, the walls of which are coated with a polymeric fluorocarbon film by introducing a gaseous polymerizable fluorocarbon into the chamber and applying radio-frequency at a power level of about 100 to about 1000 watts, employing a pressure of about 10 to 180 mTorr and a self-bias voltage of about -50 to about -700 volts. The polymeric fluorocarbon layer is about 0.05 to about 5 .mu.m thick, has a maximum dielectric constant of about 2.5, has a C/F ratio of about 1:1 to about 1:3, is thermally stable at temperatures of at least about 350.degree. C., and is substantially free from metallic contamination and oxygen.
    Type: Grant
    Filed: April 30, 1991
    Date of Patent: September 14, 1993
    Assignee: International Business Machines Corporation
    Inventors: Thao N. Nguyen, Gottlieb S. Oehrlein, Zeev A. Weinberg
  • Patent number: 5155657
    Abstract: The invention provides a capacitor having increased capacitance comprising one or more main vertical trenches and one or more lateral trenches extending off the main vertical trench. The capacitor has alternating first and second regions, preferably silicon and non-silicon regions (for example, alternating silicon and germanium or alternating silicon and carbon regions). The etch characteristics of the alternating regions are utilized to selectively etch lateral trenches thereby increasing the surface area and capacitance of the capacitor. A method of fabricating the capacitors is also provided.
    Type: Grant
    Filed: October 31, 1991
    Date of Patent: October 13, 1992
    Assignee: International Business Machines Corporation
    Inventors: Gottlieb S. Oehrlein, Vishnubhai V. Patel, Alfred Grill, Rodney T. Hodgson, Gary W. Rubloff
  • Patent number: 5153813
    Abstract: The invention provides a method of increasing the capacitance of a capacitor which comprises forming a capacitor having a main vertical trench and one or more lateral trenches extending off the main vertical trench. The capacitor has alternating first and second silicon regions, for example n-doped and p-doped silicon regions. After a main vertical trench is dry etched through the first and second silicon regions, the etch characteristics of the alternating first and second silicon regions are utilized to selectively dry etch lateral trenches, thereby increasing the surface area of the capacitor and the capacitance of the capacitor. Capacitors produced by this method are also provided.
    Type: Grant
    Filed: October 31, 1991
    Date of Patent: October 6, 1992
    Assignee: International Business Machines Corporation
    Inventors: Gottlieb S. Oehrlein, Gary W. Rubloff