Patents by Inventor Gouichi Nishizawa

Gouichi Nishizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8157927
    Abstract: It is an object of the present invention to obtain a highly coercive R-T-B system sintered magnet by making the crystal microstructure of a raw material alloy prepared by strip casting more uniform, thereby making the crushed powder obtained from such raw material alloy more fine and making the size distribution more narrow. The present invention provides a raw material alloy for an R-T-B system sintered magnet containing grains of an R2T14B compound, wherein a P and/or S content is between 100 and 950 ppm. This raw material alloy preferably has a composition comprising 25 to 35% by weight of R, 0.5 to 4% by weight of B, 0.02 to 0.6% of one or both of Al and Cu, 5% by weight or less of Co, and the balance of Fe.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: April 17, 2012
    Assignee: TDK Corporation
    Inventors: Yasushi Enokido, Chikara Ishizaka, Gouichi Nishizawa
  • Patent number: 7740716
    Abstract: The present invention provides a technique to improve an adhesion strength between a magnet main body and a protective film. The rare earth sintered magnet of the present invention comprises a magnet main body of a sintered body containing a rare earth element and a protective film formed on the magnet main body, wherein the ratio of a 10-point average surface roughness Rz of the magnet main body on which the protective film is formed to a mean grain size D50 in the magnet main body (Rz/D50 ratio) is kept in a range from 0.20 to 10.00, inclusive. This gives the rare earth sintered magnet which is coated with the protective film having a high adhesion strength of 100 N/m or more and exhibits high corrosion resistance.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: June 22, 2010
    Assignee: TDK Corporation
    Inventors: Yasushi Enokido, Gouichi Nishizawa, Chikara Ishizaka
  • Publication number: 20100111746
    Abstract: It is an object of the present invention to obtain a highly coercive R-T-B system sintered magnet by making the crystal microstructure of a raw material alloy prepared by strip casting more uniform, thereby making the crushed powder obtained from such raw material alloy more fine and making the size distribution more narrow. The present invention provides a raw material alloy for an R-T-B system sintered magnet containing grains of an R2T14B compound, wherein a P and/or S content is between 100 and 950 ppm. This raw material alloy preferably has a composition comprising 25 to 35% by weight of R, 0.5 to 4% by weight of B, 0.02 to 0.6% of one or both of Al and Cu, 5% by weight or less of Co, and the balance of Fe.
    Type: Application
    Filed: December 23, 2009
    Publication date: May 6, 2010
    Applicant: TDK CORPORATION
    Inventors: Yasushi Enokido, Chikara Ishizaka, Gouichi Nishizawa
  • Publication number: 20090178735
    Abstract: The present invention provides a technique to improve an adhesion strength between a magnet main body and a protective film. The rare earth sintered magnet of the present invention comprises a magnet main body of a sintered body containing a rare earth element and a protective film formed on the magnet main body, wherein the ratio of a 10-point average surface roughness Rz of the magnet main body on which the protective film is formed to a mean grain size D50 in the magnet main body (Rz/D50 ratio) is kept in a range from 0.20 to 10.00, inclusive. This gives the rare earth sintered magnet which is coated with the protective film having a high adhesion strength of 100 N/m or more and exhibits high corrosion resistance.
    Type: Application
    Filed: November 17, 2005
    Publication date: July 16, 2009
    Applicant: TDK CORPORATION
    Inventors: Yasushi Enokido, Gouichi Nishizawa, Chikara Ishizaka
  • Patent number: 7416613
    Abstract: A method for compacting a magnetic powder in a magnetic field comprising steps of filling a die with a magnetic powder, applying a pulsed magnetic field to the magnetic powder in the die to orientate the powder, and compressing the magnetic powder, wherein the pulsed magnetic field is applied twice or more when density ? of a compacted body of said magnetic powder satisfies the relationship ?=?×H0.5+?(?=0.63 and ?=1 to 2), where H is intensity (T) of the applied magnetic field.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: August 26, 2008
    Assignee: TDK Corporation
    Inventors: Tsutomu Chou, Gouichi Nishizawa, Masatoshi Hatakeyama, Chikara Ishizaka
  • Patent number: 7314531
    Abstract: A sintered body comprising a main phase consisting of an R2T14B phase (wherein R represents one or more rare earth elements (providing that the rare earth elements include Y), and T represents one or more transition metal elements essentially containing Fe, or Fe and Co), and a grain boundary phase containing a higher amount of R than the main phase, wherein a platy or acicular product exists. This sintered body enables to inhibit the grain growth, while keeping a decrease in magnetic properties to a minimum, and to improve a suitable sintering temperature range.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: January 1, 2008
    Assignee: TDK Corporation
    Inventors: Chikara Ishizaka, Gouichi Nishizawa, Tetsuya Hidaka, Akira Fukuno, Yoshinori Fujikawa
  • Patent number: 7311788
    Abstract: A sintered body with a composition consisting of 25% to 35% by weight of R (wherein R represents one or more rare earth elements, provided that the rare earth elements include Y), 0.5% to 4.5% by weight of B, 0.02% to 0.6% by weight of Al and/or Cu, 0.03% to 0.25% by weight of Zr, 4% or less by weight (excluding 0) of Co, and the balance substantially being Fe. This sintered body has a coefficient of variation (CV value) showing the dispersion degree of Zr of 130 or less. In addition, this sintered body has a grain boundary phase comprising a region that is rich both in at least one element selected from a group consisting of Cu, Co and R, and in Zr. This sintered body enables to inhibit the grain growth, while keeping the decrease of magnetic properties to a minimum, and to improve the suitable sintering temperature range.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: December 25, 2007
    Assignee: TDK Corporation
    Inventors: Gouichi Nishizawa, Chikara Ishizaka, Tetsuya Hidaka, Akira Fukuno, Yoshinori Fujikawa
  • Patent number: 7255751
    Abstract: When an R-T-B system rare earth permanent magnet is obtained by a mixing method to obtain a sintered body with a composition consisting essentially of 25% to 35% by weight of R (wherein R represents one or more rare earth elements, providing that the rare earth elements include Y), 0.5% to 4.5% by weight of B, 0.02% to 0.6% by weight of Al and/or Cu, 0.03% to 0.25% by weight of Zr, 4% or less by weight (excluding 0) of Co, and the balance substantially being Fe, wherein a coefficient of variation (CV) showing the dispersion of Zr is 130 or lower, Zr is contained in a low R alloy. This sintered body enables to inhibit the grain growth, while keeping the decrease of magnetic properties to a minimum, and to improve the suitable sintering temperature range.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: August 14, 2007
    Assignee: TDK Corporation
    Inventors: Gouichi Nishizawa, Chikara Ishizaka, Tetsuya Hidaka, Akira Fukuno
  • Patent number: 7255752
    Abstract: A method for manufacturing an R-T-B system rare earth permanent magnet that is a sintered body comprising a main phase consisting of an R2T14B phase (wherein R represents one or more rare earth elements (providing that the rare earth elements include Y), and T represents one or more transition metal elements essentially containing Fe, or Fe and Co), and a grain boundary phase containing a higher amount of R than the above main phase, wherein a product that is rich in Zr exists in the above R2T14B phase, the above manufacturing method comprising the steps of: preparing an R-T-B alloy containing as a main component the R2T14B phase and also containing Zr, and an R-T alloy containing R and T as main components, wherein the amount of R is higher than that of the above R-T-B alloy; obtaining a mixture of the R-T-B alloy powder and the R-T alloy powder; preparing a compacted body with a certain form from the above mixture; and sintering the above compacted body, wherein, in the above sintering step, the above produ
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: August 14, 2007
    Assignee: TDK Corporation
    Inventors: Chikara Ishizaka, Gouichi Nishizawa, Tetsuya Hidaka, Akira Fukuno, Nobuya Uchida
  • Patent number: 7192493
    Abstract: A sintered body with a composition consisting of 25% to 35% by weight of R (wherein R represents one or more rare earth elements, providing that the rare earth elements include Y), 0.5% to 4.5% by weight of B, 0.02% to 0.6% by weight of Al and/or Cu, 0.03% to 0.25% by weight of Zr, 4% or less by weight (excluding 0) of Co, and the balance substantially being Fe, wherein a coefficient of variation (CV) showing the dispersion of Zr is 130 or lower. This sintered body enables to inhibit the grain growth, while keeping the decrease of magnetic properties to a minimum, and to improve the suitable sintering temperature range.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: March 20, 2007
    Assignee: TDK Corporation
    Inventors: Gouichi Nishizawa, Chikara Ishizaka, Tetsuya Hidaka, Akira Fukuno
  • Publication number: 20060165550
    Abstract: It is an object of the present invention to obtain a highly coercive R-T-B system sintered magnet by making the crystal microstructure of a raw material alloy prepared by strip casting more uniform, thereby making the crushed powder obtained from such raw material alloy more fine and making the size distribution more narrow. The present invention provides a raw material alloy for an R-T-B system sintered magnet containing grains of an R2T14B compound, wherein a P and/or S content is between 100 and 950 ppm. This raw material alloy preferably has a composition comprising 25 to 35% by weight of R, 0.5 to 4% by weight of B, 0.02 to 0.6% of one or both of Al and Cu, 5% by weight or less of Co, and the balance of Fe.
    Type: Application
    Filed: January 23, 2006
    Publication date: July 27, 2006
    Inventors: Yasushi Enokido, Chikara Ishizaka, Gouichi Nishizawa
  • Publication number: 20050183792
    Abstract: A method for compacting a magnetic powder in a magnetic field comprising steps of filling a die with a magnetic powder, applying a pulsed magnetic field to the magnetic powder in the die to orientate the powder, and compressing the magnetic powder, wherein the pulsed magnetic field is applied twice or more when density ? of a compacted body of said magnetic powder satisfies the relationship ?=?×H0.5+? (?=0.63 and ?=1 to 2), where H is intensity (T) of the applied magnetic field.
    Type: Application
    Filed: January 21, 2005
    Publication date: August 25, 2005
    Inventors: Tsutomu Chou, Gouichi Nishizawa, Masatoshi Hatakeyama, Chikara Ishizaka
  • Patent number: 6811620
    Abstract: An R—T—B system rare earth permanent magnet, which is a sintered body comprising: a main phase consisting of an R2T14B phase (wherein R represents one or more rare earth elements (providing that the rare earth elements include Y), and T represents one or more transition metal elements essentially containing Fe, or Fe and Co); and a grain boundary phase containing a higher amount of R than the above main phase, wherein a product that is rich in Zr exists in the above R2T14B phase. The product that is rich in Zr has a platy or acicular form. The R—T—B system rare earth permanent magnet containing the product enables to inhibit the grain growth, while keeping a decrease in magnetic properties to a minimum, and to obtain a wide suitable sintering temperature range.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: November 2, 2004
    Assignee: TDK Corporation
    Inventors: Chikara Ishizaka, Gouichi Nishizawa, Tetsuya Hidaka, Akira Fukuno, Nobuya Uchida
  • Publication number: 20040187969
    Abstract: A sintered body comprising a main phase consisting of an R2T14B phase (wherein R represents one or more rare earth elements (providing that the rare earth elements include Y), and T represents one or more transition metal elements essentially containing Fe, or Fe and Co), and a grain boundary phase containing a higher amount of R than the main phase, wherein a platy or acicular product exists. This sintered body enables to inhibit the grain growth, while keeping a decrease in magnetic properties to a minimum, and to improve a suitable sintering temperature range.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 30, 2004
    Applicant: TDK CORPORATION
    Inventors: Chikara Ishizaka, Gouichi Nishizawa, Tetsuya Hidaka, Akira Fukuno, Yoshinori Fujikawa
  • Publication number: 20040187962
    Abstract: A method for manufacturing an R—T—B system rare earth permanent magnet that is a sintered body comprising a main phase consisting of an R2T14B phase (wherein R represents one or more rare earth elements (providing that the rare earth elements include Y), and T represents one or more transition metal elements essentially containing Fe, or Fe and Co), and a grain boundary phase containing a higher amount of R than the above main phase, wherein a product that is rich in Zr exists in the above R2T14B phase, the above manufacturing method comprising the steps of: preparing an R—T—B alloy containing as a main component the R2T14B phase and also containing Zr, and an R-T alloy containing R and T as main components, wherein the amount of R is higher than that of the above R—T—B alloy; obtaining a mixture of the R—T—B alloy powder and the R-T alloy powder; preparing a compacted body with a certain form from the above mixture; and sintering the above compacted body, where
    Type: Application
    Filed: March 11, 2004
    Publication date: September 30, 2004
    Applicant: TDK CORPORATION
    Inventors: Chikara Ishizaka, Gouichi Nishizawa, Tetsuya Hidaka, Akira Fukuno, Nobuya Uchida
  • Publication number: 20040187970
    Abstract: An R-T-B system rare earth permanent magnet, which is a sintered body comprising: a main phase consisting of an R2T14B phase (wherein R represents one or more rare earth elements (providing that the rare earth elements include Y), and T represents one or more transition metal elements essentially containing Fe, or Fe and Co); and a grain boundary phase containing a higher amount of R than the above main phase, wherein a product that is rich in Zr exists in the above R2T14B phase. The product that is rich in Zr has a platy or acicular form. The R-T-B system rare earth permanent magnet containing the product enables to inhibit the grain growth, while keeping a decrease in magnetic properties to a minimum, and to obtain a wide suitable sintering temperature range.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 30, 2004
    Applicant: TDK CORPORATION
    Inventors: Chikara Ishizaka, Gouichi Nishizawa, Tetsuya Hidaka, Akira Fukuno, Nobuya Uchida
  • Publication number: 20040177899
    Abstract: A sintered body with a composition consisting of 25% to 35% by weight of R (wherein R represents one or more rare earth elements, provided that the rare earth elements include Y), 0.5% to 4.5% by weight of B, 0.02% to 0.6% by weight of Al and/or Cu, 0.03% to 0.25% by weight of Zr, 4% or less by weight (excluding 0) of Co, and the balance substantially being Fe. This sintered body has a coefficient of variation (CV value) showing the dispersion degree of Zr of 130 or less. In addition, this sintered body has a grain boundary phase comprising a region that is rich both in at least one element selected from a group consisting of Cu, Co and R, and in Zr. This sintered body enables to inhibit the grain growth, while keeping the decrease of magnetic properties to a minimum, and to improve the suitable sintering temperature range.
    Type: Application
    Filed: September 29, 2003
    Publication date: September 16, 2004
    Applicant: TDK CORPORATION
    Inventors: Gouichi Nishizawa, Chikara Ishizaka, Tetsuya Hidaka, Akira Fukuno, Yoshinori Fujikawa
  • Publication number: 20040166013
    Abstract: When an R-T-B system rare earth permanent magnet is obtained by a mixing method to obtain a sintered body with a composition consisting essentially of 25% to 35% by weight of R (wherein R represents one or more rare earth elements, providing that the rare earth elements include Y), 0.5% to 4.5% by weight of B, 0.02% to 0.6% by weight of Al and/or Cu, 0.03% to 0.25% by weight of Zr, 4% or less by weight (excluding 0) of Co, and the balance substantially being Fe, wherein a coefficient of variation (CV) showing the dispersion of Zr is 130 or lower, Zr is contained in a low R alloy. This sintered body enables to inhibit the grain growth, while keeping the decrease of magnetic properties to a minimum, and to improve the suitable sintering temperature range.
    Type: Application
    Filed: September 29, 2003
    Publication date: August 26, 2004
    Applicant: TDK CORPORATION
    Inventors: Gouichi Nishizawa, Chikara Ishizaka, Tetsuya Hidaka, Akira Fukuno
  • Publication number: 20040118484
    Abstract: A sintered body with a composition consisting of 25% to 35% by weight of R (wherein R represents one or more rare earth elements, providing that the rare earth elements include Y), 0.5% to 4.5% by weight of B, 0.02% to 0.6% by weight of Al and/or Cu, 0.03% to 0.25% by weight of Zr, 4% or less by weight (excluding 0) of Co, and the balance substantially being Fe, wherein a coefficient of variation (CV) showing the dispersion of Zr is 130 or lower. This sintered body enables to inhibit the grain growth, while keeping the decrease of magnetic properties to a minimum, and to improve the suitable sintering temperature range.
    Type: Application
    Filed: September 29, 2003
    Publication date: June 24, 2004
    Applicant: TDK CORPORATION
    Inventors: Gouichi Nishizawa, Chikara Ishizaka, Tetsuya Hidaka, Akira Fukuno
  • Patent number: 5834663
    Abstract: In the manufacture of a rare earth sintered magnet of the Nd.sub.2 Fe.sub.14 B system, closed voids are formed in the magnet in a predetermined fraction to minimize shrinkage. Unlike open voids or pores in conventional semi-sintered magnets, the closed voids do not incur magnet corrosion since they do not communicate to the magnet exterior. By minimizing shrinkage during sintering in this way, a ring or plate-shaped thin wall anisotropic magnet can be prepared without machining for shape correction, achieving a cost reduction and a productivity improvement. Since a high density compact has a high deflective strength, it is easy to handle, minimizing cracking and chipping between the compacting and sintering steps.
    Type: Grant
    Filed: March 25, 1997
    Date of Patent: November 10, 1998
    Assignee: TDK Corporation
    Inventors: Akira Fukuno, Hideki Nakamura, Gouichi Nishizawa