Patents by Inventor Gouta Ogata

Gouta Ogata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10603985
    Abstract: A refrigerant that has flowed out of a liquid ejector radiates heat in a radiator, and a liquid-phase refrigerant that has radiated heat in the radiator flows into an ejection refrigerant passage of the liquid ejector. A discharged refrigerant of a compressor that suctions the refrigerant that has flowed out of a low-pressure evaporator flows into an inflow refrigerant passage of the liquid ejector. An ejector adopted as the liquid ejector is one in which an ejection refrigerant is ejected from the ejection refrigerant passage to a gas-liquid mixing portion, and the ejection refrigerant is ejected on an outer circumferential side of the inflow refrigerant flowing from the inflow refrigerant passage into the gas-liquid mixing portion.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: March 31, 2020
    Assignee: DENSO CORPORATION
    Inventors: Haruyuki Nishijima, Gouta Ogata, Yoshiaki Takano
  • Patent number: 10302341
    Abstract: An ejector-integrated heat exchanger includes multiple tube forming members. The tube forming member includes an ejector, a flow-out side refrigerant passage, and a suction side refrigerant passage. The ejector includes a nozzle portion decompressing a refrigerant, a refrigerant suction port, and a pressure increasing portion in which the refrigerant drawn from the refrigerant suction port and the refrigerant jetted from the nozzle portion are mixed, a pressure of the mixed refrigerant being increased in the pressure increasing portion. In the flow-out side refrigerant passage, the refrigerant flowing out of the pressure increasing portion performs heat exchange while flowing. In the suction side refrigerant passage, the refrigerant that is to be drawn through the refrigerant suction port performs heat exchange while flowing. Multiple tube forming members are arranged such that the refrigerant flows in parallel with each other.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: May 28, 2019
    Assignee: DENSO CORPORATION
    Inventors: Gouta Ogata, Yuichi Shirota, Hiroya Hasegawa, Tatsuhiro Suzuki, Makoto Ikegami
  • Patent number: 10131203
    Abstract: An ejector draws a refrigerant on a downstream side of an exterior heat exchanger serving as an evaporator, from a refrigerant suction port by a suction effect of an injection refrigerant injected from a nozzle portion for decompressing a part of the refrigerant discharged from a compressor, and mixes the injection refrigerant with the suction refrigerant to pressurize the mixed refrigerant at a diffuser. The refrigerant flowing out of the diffuser is drawn into the compressor. In this way, the density of the refrigerant drawn into the compressor can be increased, thereby suppressing reduction in flow amount of the refrigerant flowing into an interior condenser serving as a radiator. Thus, even if the temperature of the outside air (heat-absorption target fluid) is decreased, the interior condenser is prevented from degrading its heating capacity for the ventilation air (heating target fluid).
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: November 20, 2018
    Assignee: DENSO CORPORATION
    Inventors: Tatsuhiro Suzuki, Gouta Ogata, Yuichi Shirota
  • Patent number: 10132526
    Abstract: In an ejector refrigeration cycle, an inlet of a nozzle portion of an ejector is connected to a refrigerant outlet side of a high-stage side evaporator, a refrigerant suction port of the ejector is connected to a refrigerant outlet side of a low-stage side evaporator, and an internal heat exchanger is provided for exchanging heat between a high-pressure refrigerant flowing into a low-stage side throttle device for decompressing the refrigerant flowing into the low-stage side evaporator, and a low-stage side low-pressure refrigerant flowing out of the low-stage side evaporator. Because a difference in enthalpy between the inlet and outlet of the low-stage side evaporator can be enlarged, the cooling capacities exhibited by the respective evaporators can be adjusted to be closer to each other even if the flow-rate ratio Ge/Gn of the suction refrigerant flow rate Ge to the injection refrigerant flow rate Gn is set to a relatively small value so as to make it possible to improve the COP of the cycle.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: November 20, 2018
    Assignee: DENSO CORPORATION
    Inventors: Gouta Ogata, Yuichi Shirota, Hiroya Hasegawa, Tatsuhiro Suzuki
  • Publication number: 20180087848
    Abstract: An ejector-integrated heat exchanger includes multiple tube forming members. The tube forming member includes an ejector, a flow-out side refrigerant passage, and a suction side refrigerant passage. The ejector includes a nozzle portion decompressing a refrigerant, a refrigerant suction port, and a pressure increasing portion in which the refrigerant drawn from the refrigerant suction port and the refrigerant jetted from the nozzle portion are mixed, a pressure of the mixed refrigerant being increased in the pressure increasing portion. In the flow-out side refrigerant passage, the refrigerant flowing out of the pressure increasing portion performs heat exchange while flowing. In the suction side refrigerant passage, the refrigerant that is to be drawn through the refrigerant suction port performs heat exchange while flowing. Multiple tube forming members are arranged such that the refrigerant flows in parallel with each other.
    Type: Application
    Filed: January 21, 2016
    Publication date: March 29, 2018
    Inventors: Gouta OGATA, Yuichi SHIROTA, Hiroya HASEGAWA, Tatsuhiro SUZUKI, Makoto IKEGAMI
  • Publication number: 20170253106
    Abstract: A refrigerant that has flowed out of a liquid ejector radiates heat in a radiator, and a liquid-phase refrigerant that has radiated heat in the radiator flows into an ejection refrigerant passage of the liquid ejector. A discharged refrigerant of a compressor that suctions the refrigerant that has flowed out of a low-pressure evaporator flows into an inflow refrigerant passage of the liquid ejector. An ejector adopted as the liquid ejector is one in which an ejection refrigerant is ejected from the ejection refrigerant passage to a gas-liquid mixing portion, and the ejection refrigerant is ejected on an outer circumferential side of the inflow refrigerant flowing from the inflow refrigerant passage into the gas-liquid mixing portion.
    Type: Application
    Filed: September 1, 2015
    Publication date: September 7, 2017
    Applicant: DENSO CORPORATION
    Inventors: Haruyuki NISHIJIMA, Gouta OGATA, Yoshiaki TAKANO
  • Publication number: 20170045269
    Abstract: In an ejector refrigeration cycle, an inlet of a nozzle portion of an ejector is connected to a refrigerant outlet side of a high-stage side evaporator, a refrigerant suction port of the ejector is connected to a refrigerant outlet side of a low-stage side evaporator, and an internal heat exchanger is provided for exchanging heat between a high-pressure refrigerant flowing into a low-stage side throttle device for decompressing the refrigerant flowing into the low-stage side evaporator, and a low-stage side low-pressure refrigerant flowing out of the low-stage side evaporator. Because a difference in enthalpy between the inlet and outlet of the low-stage side evaporator can be enlarged, the cooling capacities exhibited by the respective evaporators can be adjusted to be closer to each other even if the flow-rate ratio Ge/Gn of the suction refrigerant flow rate Ge to the injection refrigerant flow rate Gn is set to a relatively small value so as to make it possible to improve the COP of the cycle.
    Type: Application
    Filed: May 18, 2015
    Publication date: February 16, 2017
    Inventors: Gouta OGATA, Yuichi SHIROTA, Hiroya HASEGAWA, Tatsuhiro SUZUKI
  • Publication number: 20160280041
    Abstract: An ejector draws a refrigerant on a downstream side of an exterior heat exchanger serving as an evaporator, from a refrigerant suction port by a suction effect of an injection refrigerant injected from a nozzle portion for decompressing a part of the refrigerant discharged from a compressor, and mixes the injection refrigerant with the suction refrigerant to pressurize the mixed refrigerant at a diffuser. The refrigerant flowing out of the diffuser is drawn into the compressor. In this way, the density of the refrigerant drawn into the compressor can be increased, thereby suppressing reduction in flow amount of the refrigerant flowing into an interior condenser serving as a radiator. Thus, even if the temperature of the outside air (heat-absorption target fluid) is decreased, the interior condenser is prevented from degrading its heating capacity for the ventilation air (heating target fluid).
    Type: Application
    Filed: September 22, 2014
    Publication date: September 29, 2016
    Applicant: Denso Corporation
    Inventors: Tatsuhiro SUZUKI, Gouta OGATA, Yuichi SHIROTA
  • Patent number: 8973394
    Abstract: In an evaporator unit, a first evaporator is coupled to an ejector to evaporate refrigerant flowing out of the ejector, a second evaporator is coupled to a refrigerant suction port of the ejector to evaporate the refrigerant to be drawn into the refrigerant suction port, a flow amount distributor is located to adjust a flow amount of the refrigerant distributed to the nozzle portion and a flow amount of the refrigerant distributed to the second evaporator, and a throttle mechanism is provided between the flow amount distributor and the second evaporator to decompress the refrigerant flowing into the second evaporator. The flow amount distributor is adapted as a gas-liquid separation portion and as a refrigerant distribution portion for distributing separated refrigerant into the nozzle portion and the second evaporator. Furthermore, the flow amount distributor and the ejector are arranged in line in a longitudinal direction of the ejector.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 10, 2015
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Tomohiko Nakamura, Gouta Ogata, Hiroshi Oshitani, Ryoko Awa, Tatsuhiko Nishino, Mika Gocho
  • Patent number: 8814532
    Abstract: A nozzle of an ejector depressurizes and injects fluid, which is supplied to the nozzle. The nozzle is received in a receiving space of a body. The nozzle and the body are formed by press working. The nozzle includes nozzle-side ribs, which extend in an axial direction and project radially outward. The body includes body-side ribs, which extend in the axial direction and project radially outward. In a predetermined cross section of each of the nozzle and the body, which is perpendicular to the axial direction and includes the corresponding ribs, the nozzle or the body is formed seamlessly as a continuous single piece member.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 26, 2014
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Kazunori Mizutori, Masahiko Ikawa, Yasuhiro Tamatsu, Hiroki Nakagawa, Haruyuki Nishijima, Mika Gocho
  • Patent number: 8523091
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: September 3, 2013
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Patent number: 8424338
    Abstract: A vapor compression refrigerating cycle apparatus includes a compressor, a radiator, first and second throttle devices, a flow distributor, an ejector, a suction passage, and first and second evaporators. The flow distributor separates refrigerant decompressed through the first throttle device into a first passage and a second passage. The first passage is in communication with a nozzle portion of the ejector. The second passage is in communication with a suction portion of the ejector through the suction passage. The second throttle device and the second evaporator are disposed on the suction passage. The flow distributor is configured to be capable of adjusting a ratio of a flow rate of refrigerant passing through the second passage to a flow rate of refrigerant passing through the first passage in accordance with a heat load of at least one of the radiator, the first evaporator and the second evaporator.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: April 23, 2013
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Gouta Ogata, Mika Gocho, Kenta Kayano
  • Publication number: 20120318894
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Application
    Filed: August 24, 2012
    Publication date: December 20, 2012
    Applicant: DENSO CORPORATION
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Patent number: 8282025
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 9, 2012
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Patent number: 8191383
    Abstract: An ejector device includes a nozzle having an inner wall surface defining a circular cross-sectional fluid passage extending from an inlet to a jet port. Furthermore, the fluid passage has a throat portion at a position between the inlet and the jet port, and a passage expanding portion in which the cross-sectional area of the fluid passage is enlarged from the throat portion as toward downstream. The passage expanding portion includes a middle portion in which the inner wall surface is expanded in a fluid flow direction by a first expanding angle, and an outlet portion from a downstream end of the middle portion to the jet port, in which the inner wall surface is expanded in the fluid flow direction by a second expanding angle that is larger than the first expanding angle. The ejector device can be suitably used for a refrigeration cycle apparatus.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: June 5, 2012
    Assignee: Denso Corporation
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho, Hideya Matsui, Kenta Kayano, Teruyuki Hano
  • Patent number: 8105050
    Abstract: A housing is configured into a tubular form and receives at least a portion of an ejector functional unit, which includes a nozzle and a body. A housing side opening radially penetrates through an outer peripheral wall surface and an inner peripheral wall surface of the housing and communicates with the fluid suction opening of the body. The housing side opening is adapted to join with a suction opening side external device, through which the fluid is drawn into the fluid suction opening.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: January 31, 2012
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Kazunori Mizutori, Gouta Ogata, Hideya Matsui, Hiroshi Oshitani, Youhei Nagano
  • Publication number: 20110236227
    Abstract: A nozzle of an ejector depressurizes and injects fluid, which is supplied to the nozzle. The nozzle is received in a receiving space of a body. The nozzle and the body are formed by press working. The nozzle includes nozzle-side ribs, which extend in an axial direction and project radially outward. The body includes body-side ribs, which extend in the axial direction and project radially outward. In a predetermined cross section of each of the nozzle and the body, which is perpendicular to the axial direction and includes the corresponding ribs, the nozzle or the body is formed seamlessly as a continuous single piece member.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Applicant: DENSO CORPORATION
    Inventors: Gouta Ogata, Kazunori Mizutori, Masahiko Ikawa, Yasuhiro Tamatsu, Hiroki Nakagawa, Haruyuki Nishijima, Mika Gocho
  • Publication number: 20110061423
    Abstract: In an ejector, a refrigerant passage of a nozzle for decompressing and expanding refrigerant includes a throat portion in which a refrigerant passage sectional area is most reduced, a first taper portion arranged downstream of the throat portion to gradually enlarge the refrigerant passage sectional area, a second taper portion arranged downstream of the first taper portion to gradually enlarge the refrigerant passage sectional area, and an end taper portion arranged in a range from an outlet side of the second taper portion to a refrigerant jet port to gradually enlarge the refrigerant passage sectional area. Furthermore, a second expanding angle at the outlet side of the second taper portion is larger than the first expanding angle at the outlet side of the first taper portion, and an end expanding angle at the outlet side of the end taper portion is smaller than the second expanding angle.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 17, 2011
    Applicant: DENSO CORPORATION
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho
  • Publication number: 20100175422
    Abstract: In an evaporator unit, a first evaporator is coupled to an ejector to evaporate refrigerant flowing out of the ejector, a second evaporator is coupled to a refrigerant suction port of the ejector to evaporate the refrigerant to be drawn into the refrigerant suction port, a flow amount distributor is located to adjust a flow amount of the refrigerant distributed to the nozzle portion and a flow amount of the refrigerant distributed to the second evaporator, and a throttle mechanism is provided between the flow amount distributor and the second evaporator to decompress the refrigerant flowing into the second evaporator. The flow amount distributor is adapted as a gas-liquid separation portion and as a refrigerant distribution portion for distributing separated refrigerant into the nozzle portion and the second evaporator. Furthermore, the flow amount distributor and the ejector are arranged in line in a longitudinal direction of the ejector.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 15, 2010
    Applicant: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Tomohiko Nakamura, Gouta Ogata, Hiroshi Oshitani, Ryoko Awa, Tatsuhiko Nishino, Mika Gocho
  • Publication number: 20090297367
    Abstract: A housing is configured into a tubular form and receives at least a portion of an ejector functional unit, which includes a nozzle and a body. A housing side opening radially penetrates through an outer peripheral wall surface and an inner peripheral wall surface of the housing and communicates with the fluid suction opening of the body. The housing side opening is adapted to join with a suction opening side external device, through which the fluid is drawn into the fluid suction opening.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Applicant: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Kazunori Mizutori, Gouta Ogata, Hideya Matsui, Hiroshi Oshitani, Youhei Nagano