Patents by Inventor Govindarajan Muralidharan

Govindarajan Muralidharan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240060164
    Abstract: A cast AFA alloy composition comprising, in weight percent: 0.4 to 0.59 Nb+Ta; 0.4 to 0.6 C; 16 to 18 Cr; 18-23 Ni; 3.5-5.5 Al; 0.005 to 0.15 B; up to 1.5 Mo; up to 2 Co; up to 1 W; up to 3 Cu; up to 4 Mn; up to 2 Si; up to 0.5 wt. % total of at least one element selected from the group consisting of Ti and V; up to 0.06 N; up to 1 wt. % total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; balance Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina to at least 900° C. in air with 10% H2O, and a stable essentially single-phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free, with creep rupture life in excess of 500 h at 900° C. and 50 MPa.
    Type: Application
    Filed: August 21, 2023
    Publication date: February 22, 2024
    Inventors: MICHAEL P. BRADY, GOVINDARAJAN MURALIDHARAN, YUKINORI YAMAMOTO
  • Patent number: 11866809
    Abstract: An austenitic Ni-base alloy, consisting essentially of, in weight percent: 2.5 to 4.75 Al; 21 to 26 Cr; 20 to 40 Fe; 0.75 to 2.5 total of at least one element elected from the group consisting of Nb and Ta; 0 to 0.25 Ti; 0.09 to 1.5 Si; 0 to 0.5 V; 0 to 2 Mn; 0 to 3 Cu; 0 to 2 of at least one element selected from the group consisting of Mo and W; 0 to 1 of at least one element selected from the group consisting of Zr and Hf; 0 to 0.15 Y; 0.3 to 0.55 C; 0.005 to 0.1 B; 0 to 0.05 P; less than 0.06 N and balance Ni (30 to 46 Ni), wherein the weight percent Ni is greater than the weight percent Fe, and wherein the ratio Ni/(Fe+2*C) is between 1.02 and 1.067.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: January 9, 2024
    Assignee: UT-BATTELLE, LLC
    Inventors: Govindarajan Muralidharan, Michael P. Brady, Yukinori Yamamoto
  • Patent number: 11479836
    Abstract: An austenitic Ni-base alloy includes, in weight percent: 2.5 to 4.75 Al; 13 to 21 Cr; 20 to 40 Fe; 2 to 5 total of at least one element selected from the group consisting of Nb and Ta; 0.25 to 4.5 Ti; 0.09 to 1.5 Si; 0 to 0.5 V; 0 to 2 Mn; 0 to 3 Cu; 0 to 2 of Mo and W; 0 to 1 of Zr and Hf; 0 to 0.15 Y; 0.01 to 0.45 C; 0.005 to 0.1 B; 0 to 0.05 P; less than 0.06 N; and balance Ni (38 to 46 Ni). The weight percent Ni is greater than the weight percent Fe. An external continuous scale comprises alumina. A stable phase FCC austenitic matrix microstructure is essentially delta-ferrite-free, and contains one or more carbides and coherent precipitates of ?? and exhibits creep rupture life of at least 100 h at 900° C. and 50 MPa.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: October 25, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Govindarajan Muralidharan, Michael P. Brady, Yukinori Yamamoto
  • Publication number: 20220251690
    Abstract: An austenitic Ni-base alloy, consisting essentially of, in weight percent: 2.5 to 4.75 Al; 21 to 26 Cr; 20 to 40 Fe; 0.75 to 2.5 total of at least one element elected from the group consisting of Nb and Ta; 0 to 0.25 Ti; 0.09 to 1.5 Si; 0 to 0.5 V; 0 to 2 Mn; 0 to 3 Cu; 0 to 2 of at least one element selected from the group consisting of Mo and W; 0 to 1 of at least one element selected from the group consisting of Zr and Hf; 0 to 0.15 Y; 0.3 to 0.55 C; 0.005 to 0.1 B; 0 to 0.05 P; less than 0.06 N and balance Ni (30 to 46 Ni), wherein the weight percent Ni is greater than the weight percent Fe, wherein the ratio Ni/(Fe+2*C) is between 0.95 and 1.0735, with a scale comprising alumina, a stable phase FCC austenitic matrix microstructure, carbide strengthening phases, and with a creep rupture lifetime of at least 100 h at 900° C. and 50 MPa.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 11, 2022
    Inventors: Govindarajan Muralidharan, Michael P. Brady, Yukinori Yamamoto
  • Publication number: 20220243304
    Abstract: An austenitic Ni-base alloy includes, in weight percent: 2.5 to 4.75 Al; 13 to 21 Cr; 20 to 40 Fe; 2 to 5 total of at least one element selected from the group consisting of Nb and Ta; 0.25 to 4.5 Ti; 0.09 to 1.5 Si; 0 to 0.5 V; 0 to 2 Mn; 0 to 3 Cu; 0 to 2 of Mo and W; 0 to 1 of Zr and Hf; 0 to 0.15 Y; 0.01 to 0.45 C; 0.005 to 0.1 B; 0 to 0.05 P; less than 0.06 N; and balance Ni (38 to 46 Ni). The weight percent Ni is greater than the weight percent Fe. An external continuous scale comprises alumina. A stable phase FCC austenitic matrix microstructure is essentially delta-ferrite-free, and contains one or more carbides and coherent precipitates of ?? and exhibits creep rupture life of at least 100 h at 900° C. and 50 MPa.
    Type: Application
    Filed: January 29, 2021
    Publication date: August 4, 2022
    Inventors: Govindarajan Muralidharan, Michael P. Brady, Yukinori Yamamoto
  • Patent number: 11193190
    Abstract: An air castable Fe-based stainless steel alloy comprises in weight % based on the total weight of the alloy 18-22% Cr, 15-22% Ni, 3-6% Al, 0.5-5% Mn, 0-3.5% W, 0-5% Cu, 0-2% Si, 1-2.5% Nb, 0.3-0.6% C balance Fe wherein, Cu+W+Si=0.5-10.5, and the alloy provides an oxidation resistance of 0.5<specific mass change<+2 mg/cm2 after 400 one hour cycles at 900° C. in 10% water vapor.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: December 7, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Philip J Maziasz, Govindarajan Muralidharan, Bruce A. Pint, Kinga A. Unocic, Ying Yang
  • Publication number: 20210055167
    Abstract: An improved ultrasonic waveguide for an ultrasonic thermometry system is provided. The waveguide includes a series of sensing zones, each of which is tuned to a specific narrow frequency band. The waveguide is acoustically coupled to a transducer, which launches a longitudinal elastic wave of desired waveform and frequency. The wave propagates down the waveguide, and is reflected from the sensing zone that is tuned to that frequency. Each sensing zone is designed to be highly reflective to a narrow frequency band while being transparent to other frequencies.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventors: Nesrin O. Cetiner, Mustafa S. Cetiner, Michael J. Roberts, Thomas R. Muth, Venugopal K. Varma, Rosemary A. Montgomery, Govindarajan Muralidharan
  • Patent number: 10745781
    Abstract: An alumina-forming, high temperature creep resistant alloy is composed essentially of, in terms of weight percent: up to 10 Fe, 3.3 to 4.6 Al, 6 to 22 Cr, 0.68 to 0.74 Mn, 5.2 to 6.6 Mo, 0.4 to 1.2 Ti, up to 0.1 Hf, 0.005 to 0.05 La, 0.4 to 0.6 W, 0.1 to 0.35 C, up to 0.002 B, 0.001 to 0.02 N, balance Ni.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: August 18, 2020
    Assignee: UT-BATTELLE, LLC
    Inventors: Govindarajan Muralidharan, Bruce A. Pint
  • Publication number: 20190330723
    Abstract: An air castable Fe-based stainless steel alloy comprises in weight % based on the total weight of the alloy 18-22% Cr, 15-22% Ni, 3-6% Al, 0.5-5% Mn, 0-3.5% W, 0-5% Cu, 0-2% Si, 1-2.5% Nb, 0.3-0.6% C balance Fe wherein, Cu+W+Si=0.5-10.5, and the alloy provides an oxidation resistance of 0.5<specific mass change<+2 mg/cm2 after 400 one hour cycles at 900° C. in 10% water vapor.
    Type: Application
    Filed: July 12, 2019
    Publication date: October 31, 2019
    Inventors: Philip J. Maziasz, Govindarajan Muralidharan, Bruce A. Pint, Kinga A. Unocic, Ying Yang
  • Publication number: 20190226065
    Abstract: An air castable Fe-based stainless steel alloy comprises in weight % based on the total weight of the alloy 18-22% Cr, 15-22% Ni, 3-6% Al, 0.5-5% Mn, 0-3.5% W, 0-5% Cu, 0-2% Si, 1-2.5% Nb, 0.3-0.5% C balance Fe wherein, Cu+W+Si=0.5-10.5, and the alloy provides an oxidation resistance of 0.5<specific mass change <+2 mg/cm2 after 400 one hour cycles at 900° C. in 10% water vapor.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 25, 2019
    Inventors: Philip J. Maziasz, Govindarajan Muralidharan, Bruce A. Pint, Kinga A. Unocic, Ying Yang
  • Publication number: 20190169714
    Abstract: An alumina-forming, high temperature creep resistant alloy is composed essentially of, in terms of weight percent: up to 10 Fe, 3.3 to 4.6 Al, 6 to 22 Cr, 0.68 to 0.74 Mn, 5.2 to 6.6 Mo, 0.4 to 1.2 Ti, up to 0.1 Hf, 0.005 to 0.05 La, 0.4 to 0.6 W, 0.1 to 0.35 C, up to 0.002 B, 0.001 to 0.02 N, balance Ni.
    Type: Application
    Filed: November 12, 2018
    Publication date: June 6, 2019
    Inventors: Govindarajan Muralidharan, Bruce A. Pint
  • Patent number: 10174408
    Abstract: An alumina-forming, high temperature creep resistant alloy is composed essentially of, in terms of weight percent: up to 10 Fe, 3.3 to 4.6 Al, 6 to 22 Cr, 0.68 to 0.74 Mn, 5.2 to 6.6 Mo, 0.4 to 1.2 Ti, up to 0.1 Hf, 0.005 to 0.05 La, 0.4 to 0.6 W, 0.1 to 0.35 C, up to 0.002 B, 0.001 to 0.02 N, balance Ni.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 8, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Govindarajan Muralidharan, Bruce A. Pint
  • Patent number: 10017842
    Abstract: An essentially Fe-free alloy consists essentially of, in terms of weight percent: 4 to 11 Co, 6.5 to 7.5 Cr, 0 to 0.15 Al, 0.5 to 0.85 Mn, 11 to 20 Mo, 1 to 3.5 Ta, 0.05 to 9 W, 0.03 to 0.08 C, 0 to 0.001 B, 0.0005 to 0.005 N, balance Ni, the alloy being characterized by, at 850° C., a yield strength of at least 25 Ksi, a tensile strength of at least 45 Ksi, a creep rupture life at 12 Ksi of at least 10 hours, and a corrosion rate, expressed in weight loss [g/(cm2sec)]10?11 during a 1000 hour immersion in liquid FLiNaK at 850° C., in the range of 5 to 20.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: July 10, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: David E. Holcomb, Govindarajan Muralidharan, Dane F. Wilson
  • Patent number: 9752468
    Abstract: An Fe—Ni—Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5?Al+Ti+Zr+Hf+Ta?11.5, 0.53?Al÷(Al+Ti+Zr+Hf+Ta)?0.65, and 0.16?Cr÷(Fe+Ni+Cr+Mn)?0.21, the alloy being essentially free of Cu, Si, and V.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: September 5, 2017
    Inventor: Govindarajan Muralidharan
  • Patent number: 9683280
    Abstract: An alloy consists essentially of, in terms of weight percent: 6 to 8.5 Cr, 5.5 to 13.5 Mo, 0.4 to 7.5 W, 1 to 2 Ti, 0.7 to 0.85 Mn, 0.05 to 0.3 Al, up to to 0.1 Co, 0.08 to 0.5 C, 1 to 5 Ta, 1 to 4 Nab, 1 to 3 Hf, balance Ni. The alloy is characterized by, at 850° C., a yield strength of at least 36 Ksi, a tensile strength of at least 40 Ksi, a creep rupture life at 12 Ksi of at least 72.1 hours, and a corrosion rate, expressed in weight loss [g/(cm2sec)]×10?11 during a 1000 hour immersion in liquid FLiNaK at 850° C., in the range of 8 to 25.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: June 20, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Govindarajan Muralidharan, Dane Francis Wilson, David Eugene Holcomb
  • Patent number: 9683279
    Abstract: An alloy is composed essentially of, in terms of weight percent: 6 to 8.5 Cr, 5.5 to 13.5 Mo, 0.4 to 7.5 W, 1 to 2 Ti, 0.7 to 0.85 Mn, 0.05 to 0.3 Al, 0.08 to 0.5 C, 0 to 1 Nb, with the balance Ni, the alloy being characterized by, at 850° C., a yield strength of at least 25 Ksi, a tensile strength of at least 30 Ksi, a creep rupture life at 12 Ksi of at least 45 hours, and a corrosion rate, expressed in weight loss [g/(cm2 sec)]10?11 during a 1000 hour immersion in liquid FLiNaK at 850° C., in the range of 6 to 39.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: June 20, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Govindarajan Muralidharan, Dane Francis Wilson, David Eugene Holcomb
  • Patent number: 9617189
    Abstract: An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotating magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 11, 2017
    Assignee: UT-Battelle, LLC
    Inventors: Govindarajan Muralidharan, Joseph A. Angelini, Bart L. Murphy, John B. Wilgen
  • Patent number: 9605565
    Abstract: An Fe—Ni—Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5?Al+Ti+Zr+Hf+Ta?10, 0.33?Al÷(Al+Ti+Zr+Hf+Ta)?0.065, 4?(Fe+Cr)÷(Al+Ti+Zr+Hf+Ta)?10, the alloy being essentially free of Nb and V.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: March 28, 2017
    Assignee: UT-BATTELLE, LLC
    Inventor: Govindarajan Muralidharan
  • Patent number: 9540714
    Abstract: An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a ?? microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850° C., a yield strength of at least 60 Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm2sec)]10?11 during a 1000 hour immersion in liquid FLiNaK at 850° C., in the range of 5.5 to 17.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 10, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: David E. Holcomb, Govindarajan Muralidharan, Dane F. Wilson
  • Publication number: 20160369376
    Abstract: An alumina-forming, high temperature creep resistant alloy is composed essentially of, in terms of weight percent: up to 10 Fe, 3.3 to 4.6 Al, 6 to 22 Cr, 0.68 to 0.74 Mn, 5.2 to 6.6 Mo, 0.4 to 1.2 Ti, up to 0.1 Hf, 0.005 to 0.05 La, 0.4 to 0.6 W, 0.1 to 0.35 C, up to 0.002 B, 0.001 to 0.02 N, balance Ni.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 22, 2016
    Inventors: Govindarajan Muralidharan, Bruce A. Pint