Patents by Inventor Graeme DOCHERTY

Graeme DOCHERTY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11817835
    Abstract: A first system includes first and second buck-boost amplifiers. The first amplifier is connected to a battery, includes a first inductor and a first plurality of switches connected to the first inductor, and drives first and second loads. The second amplifier is connected to the battery, includes a second inductor and a second plurality of switches connected to the second inductor, and drives the first and second loads. A controller drives the first and second plurality of switches to operate each of the first and second amplifiers in a single inductor multiple output mode. A second system includes multiple buck-boost amplifiers connected to a battery and driving respective loads. Each amplifier includes inductors and switches connected to the inductors. A controller drives the switches to utilize one or more inductors based on an amount of power used by each amplifier to drive the respective loads.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: November 14, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Doug Heineman, Graeme Docherty, Feng Yu
  • Patent number: 11496096
    Abstract: A first module is configured to, based on an input sample, determine a first duty cycle. A second module is configured to, based on a battery voltage and the first duty cycle, determine a second duty cycle. A third module is configured to: set a scalar value based on at least one of a battery current, an amplitude of the input sample, the second duty cycle, and an output voltage; and generate a start signal at a rate equal to a predetermined rate multiplied by the scalar value. A fourth module is configured to set a third duty cycle based on the second duty cycle and the scalar value. A fifth module is configured to generate a PWM output based on the start signal and the third duty cycle. A sixth module is configured to apply power to gates of FETs of a voltage converter based on the PWM output.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: November 8, 2022
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Doug Heineman, Graeme Docherty, Feng Yu
  • Publication number: 20210021243
    Abstract: A first system includes first and second buck-boost amplifiers. The first amplifier is connected to a battery, includes a first inductor and a first plurality of switches connected to the first inductor, and drives first and second loads. The second amplifier is connected to the battery, includes a second inductor and a second plurality of switches connected to the second inductor, and drives the first and second loads. A controller drives the first and second plurality of switches to operate each of the first and second amplifiers in a single inductor multiple output mode. A second system includes multiple buck-boost amplifiers connected to a battery and driving respective loads. Each amplifier includes inductors and switches connected to the inductors. A controller drives the switches to utilize one or more inductors based on an amount of power used by each amplifier to drive the respective loads.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: Cary DELANO, Doug HEINEMAN, Graeme DOCHERTY, Feng YU
  • Publication number: 20200382063
    Abstract: A first module is configured to, based on an input sample, determine a first duty cycle. A second module is configured to, based on a battery voltage and the first duty cycle, determine a second duty cycle. A third module is configured to: set a scalar value based on at least one of a battery current, an amplitude of the input sample, the second duty cycle, and an output voltage; and generate a start signal at a rate equal to a predetermined rate multiplied by the scalar value. A fourth module is configured to set a third duty cycle based on the second duty cycle and the scalar value. A fifth module is configured to generate a PWM output based on the start signal and the third duty cycle. A sixth module is configured to apply power to gates of FETs of a voltage converter based on the PWM output.
    Type: Application
    Filed: May 15, 2020
    Publication date: December 3, 2020
    Inventors: Cary DELANO, Doug HEINEMAN, Graeme DOCHERTY, Feng YU
  • Patent number: 10797660
    Abstract: Various buck-boost amplifier architectures are disclosed. In some architectures, a plurality of amplifiers use one or more inductors from a shared bank of inductors as needed to deliver variable amounts of power to respective loads. In some architectures, each amplifier includes multiple inductors and switches that are controlled to vary the number of inductors used in an amplifier based on a power requirement of the amplifier to drive its load. In some architectures, the switches include well switching devices. In some architectures, each amplifier drives multiple loads and is operated in a single inductor multiple output (SIMO) mode. In all architectures, the loads include speakers, piezo elements, and motors.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: October 6, 2020
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Cary Delano, Doug Heineman, Graeme Docherty, Feng Yu
  • Publication number: 20190319593
    Abstract: Various buck-boost amplifier architectures are disclosed. In some architectures, a plurality of amplifiers use one or more inductors from a shared bank of inductors as needed to deliver variable amounts of power to respective loads. In some architectures, each amplifier includes multiple inductors and switches that are controlled to vary the number of inductors used in an amplifier based on a power requirement of the amplifier to drive its load. In some architectures, the switches include well switching devices. In some architectures, each amplifier drives multiple loads and is operated in a single inductor multiple output (SIMO) mode. In all architectures, the loads include speakers, piezo elements, and motors.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 17, 2019
    Inventors: Cary DELANO, Doug HEINEMAN, Graeme DOCHERTY, Feng YU