Patents by Inventor Graeme Knox

Graeme Knox has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11649330
    Abstract: An aqueous adhesive composition for treating a reinforcing fiber for bonding to a thermosetting polymer matrix and products made therefrom such as power transmission belts. The adhesive composition includes: water as the solvent or dispersing medium; a polyelectrolyte co-curable with the polymer matrix; a primer material compatible with the fiber and co-curable with the polyelectrolyte; and optionally a rubber curative compatible with the polyelectrolyte and the polymer matrix. A fiber-reinforced, composite polymer system may thus include a thermosetting polymer matrix, a reinforcing fiber embedded therein, and an adhesive composition coating the fiber; the adhesive composition including a polyelectrolyte co-curable with the polymer matrix and a primer material compatible with the fiber and co-curable with the polyelectrolyte. The adhesive composition may include a curative compatible with the polyelectrolyte.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: May 16, 2023
    Assignee: Gates Corporation
    Inventors: Kelechi C. Anyaogu, John Graeme Knox
  • Patent number: 11111342
    Abstract: A belt with a tensile cord embedded in an elastomeric body, having a polyurea-urethane adhesive composition impregnating the cord and coating the fibers. The composition is reaction product of a polyurethane prepolymer and a diamine curative. The prepolymer is a reaction product of a compact, symmetric diisocyanate and a polyester, polyether, or polycarbonate polyol. The belt body may be of cast polyurethane, vulcanized rubber, or thermoplastic elastomer. The cord may have an adhesive overcoat.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 7, 2021
    Assignee: Gates Corporation
    Inventors: Joseph R. Duke, Jr., John Graeme Knox
  • Publication number: 20200262988
    Abstract: An aqueous adhesive composition for treating a reinforcing fiber for bonding to a thermosetting polymer matrix and products made therefrom such as power transmission belts. The adhesive composition includes: water as the solvent or dispersing medium; a polyelectrolyte co-curable with the polymer matrix; a primer material compatible with the fiber and co-curable with the polyelectrolyte; and optionally a rubber curative compatible with the polyelectrolyte and the polymer matrix. A fiber-reinforced, composite polymer system may thus include a thermosetting polymer matrix, a reinforcing fiber embedded therein, and an adhesive composition coating the fiber; the adhesive composition including a polyelectrolyte co-curable with the polymer matrix and a primer material compatible with the fiber and co-curable with the polyelectrolyte. The adhesive composition may include a curative compatible with the polyelectrolyte.
    Type: Application
    Filed: May 5, 2020
    Publication date: August 20, 2020
    Inventors: Kelechi C. Anyaogu, John Graeme Knox
  • Patent number: 10640619
    Abstract: An aqueous adhesive composition for treating a reinforcing fiber for bonding to a thermosetting polymer matrix and products made therefrom such as power transmission belts. The adhesive composition includes: water as the solvent or dispersing medium; a polyelectrolyte co-curable with the polymer matrix; a primer material compatible with the fiber and co-curable with the polyelectrolyte; and optionally a rubber curative compatible with the polyelectrolyte and the polymer matrix. A fiber-reinforced, composite polymer system may thus include a thermosetting polymer matrix, a reinforcing fiber embedded therein, and an adhesive composition coating the fiber; the adhesive composition including a polyelectrolyte co-curable with the polymer matrix and a primer material compatible with the fiber and co-curable with the polyelectrolyte. The adhesive composition may include a curative compatible with the polyelectrolyte.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: May 5, 2020
    Assignee: Gates Corporation
    Inventors: Kelechi C. Anyaogu, John Graeme Knox
  • Patent number: 10626546
    Abstract: A treated carbon fiber tensile cord for use in power transmission belts, hose, tires or other reinforced rubber products and the resulting product, which includes carbon fibers which are coated with a polymeric layer deposited and polymerized at atmospheric pressure in a plasma assisted chemical vapor deposition process. A suitable polymeric layer is compatible with the intended matrix which the cord will reinforce. For a rubber belt, the coating is compatible with the rubber composition of the belt body or an adhesion gum or adhesive such as RFL which surrounds the cord. For RFL/rubber systems and cast polyurethane elastomers, a suitable polymer is the APP reaction product of a vinyl carboxylic acid or an ester or amide thereof. Suitable carboxylic acids include acrylic acid and methacrylic acid. Various esters and amides of vinyl carboxylic acid are also suitable, such as 2-hydroxyethyl methacrylate, N-isobutoxymethyl acrylamide, and N-hydroxyethyl acrylamide.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: April 21, 2020
    Assignee: Gates Corporation
    Inventors: John Graeme Knox, Alexander Bismarck, Su Bai
  • Publication number: 20180223056
    Abstract: A belt with a tensile cord embedded in an elastomeric body, having a polyurea-urethane adhesive composition impregnating the cord and coating the fibers. The composition is reaction product of a polyurethane prepolymer and a diamine curative. The prepolymer is a reaction product of a compact, symmetric diisocyanate and a polyester, polyether, or polycarbonate polyol. The belt body may be of cast polyurethane, vulcanized rubber, or thermoplastic elastomer. The cord may have an adhesive overcoat.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: Joseph R. Duke, JR., John Graeme Knox
  • Patent number: 9944763
    Abstract: A belt with a tensile cord embedded in an elastomeric body, having a polyurea-urethane adhesive composition impregnating the cord and coating the fibers. The composition is reaction product of a polyurethane prepolymer and a diamine curative or water. The prepolymer is a reaction product of a compact, symmetric diisocyanate and a polyester, polyether, or polycarbonate polyol. The belt body may be of cast polyurethane, vulcanized rubber, or thermoplastic elastomer. The cord may have an adhesive overcoat.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: April 17, 2018
    Assignee: Gates Corporation
    Inventors: Joseph R. Duke, Jr., John Graeme Knox
  • Publication number: 20170130014
    Abstract: An aqueous adhesive composition for treating a reinforcing fiber for bonding to a thermosetting polymer matrix and products made therefrom such as power transmission belts. The adhesive composition includes: water as the solvent or dispersing medium; a polyelectrolyte co-curable with the polymer matrix; a primer material compatible with the fiber and co-curable with the polyelectrolyte; and optionally a rubber curative compatible with the polyelectrolyte and the polymer matrix. A fiber-reinforced, composite polymer system may thus include a thermosetting polymer matrix, a reinforcing fiber embedded therein, and an adhesive composition coating the fiber; the adhesive composition including a polyelectrolyte co-curable with the polymer matrix and a primer material compatible with the fiber and co-curable with the polyelectrolyte. The adhesive composition may include a curative compatible with the polyelectrolyte.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 11, 2017
    Inventors: Kelechi C. Anyaogu, John Graeme Knox
  • Patent number: 9434222
    Abstract: A snap-in tire valve for mounting in a valve hole in a wheel rim, having a valve body and a resilient member having an overall shape including a groove and a rib adapted to snap into and be retained in the hole. The resilient member may include a rubber that is the reaction product of ethylene-propylene copolymer elastomer, a peroxide curative, zinc diacrylate or zinc dimethacrylate, and a high-density inert filler, such as barium sulfate. The resilient member may include a first and second rubber members of different compositions from each other and defining two layers under the groove. The thickness of the layer of the first rubber member is preferably greater than the thickness of the layer of the second rubber member.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 6, 2016
    Assignee: GATES CORPORATION
    Inventors: Donald James Burlett, John Graeme Knox
  • Patent number: 9421722
    Abstract: A system and method of making an open-ended, reinforced, layered belt having a profile layer, a top layer material, and tensile cords fully encapsulated there between. The method includes engaging portion of the profile layer on a rotatable cylindrical mandrel with an engaging roller, disengaging with a take-off roller, and applying and fusing the cords to the profile layer at a desired cord spacing there between. The cord may be fused by melting the profile layer surface with a heated plow and/or with heated cord. The cord is then covered with the top layer material in a lamination step involving heating to melt at least a portion of the top layer and pressing it to fuse it to the reinforced profile layer. Lamination may be done downstream or directly on the mandrel.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 23, 2016
    Assignee: GATES CORPORATION
    Inventors: John Graeme Knox, Lambert Pasch
  • Patent number: 9347521
    Abstract: A vulcanized rubber CVT belt in the form of an endless V-belt having a belt body with angled sides, a tensile cord layer of helically spiraled tensile cord embedded in the belt body, an overcord rubber layer, and an undercord rubber layer, wherein the tensile cord is a twisted, single-tow bundle of continuous-filament, carbon fiber impregnated with an adhesive treatment and/or overcoated with adhesive compatible with the rubber of the tensile cord layer. The tow may be 18K. The carbon fiber may have a filament diameter of from about 6.0 to about 6.4-micron, a tensile modulus of from about 200 to about 300 GPa, an elongation at break of from about 1.9% to about 2.3%.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 24, 2016
    Assignee: Gates Corporation
    Inventors: Ralph Michael Duke, John Graeme Knox
  • Patent number: 9169896
    Abstract: A system, method and apparatus for making endless belts having a profile layer, a fully embedded, helically wound, cord layer, and a top layer. The apparatus has a rotatable mandrel with a profile complementary to the belt profile, two or one engagement rolls adjacent the mandrel to maintain forced, wrapped engagement of the profile layer on a portion thereof; a cord applicator which may include a heated blade that plows a groove in the profile layer into which the cord is laid and fused thereto. A laminator applies the top layer onto the reinforced carcass. A system of buffer rolls handles the loose portion of the profile layer or carcass guiding it.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 27, 2015
    Assignee: GATES CORPORATION
    Inventors: Lambert Pasch, John Graeme Knox
  • Patent number: 9068909
    Abstract: A method for testing internal differences in reinforced flexible composites including placing a flexible composite on a rigid support structure, tapping the composite with a tapper of predetermined mass, determining a value representative of the impact duration of the tap and/or computing a value representative of the local stiffness of the composite. The composite may be a power transmission belt or portion thereof with tensile cord reinforcement. The method is useful for comparing the degree of penetration of elastomer into the tensile cord, for example in a cast polyurethane toothed belt.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: June 30, 2015
    Assignee: GATES CORPORATION
    Inventors: John Graeme Knox, Tulin K. Markes
  • Publication number: 20150152590
    Abstract: A treated carbon fiber tensile cord for use in power transmission belts, hose, tires or other reinforced rubber products and the resulting product, which includes carbon fibers which are coated with a polymeric layer deposited and polymerized at atmospheric pressure in a plasma assisted chemical vapor deposition process. A suitable polymeric layer is compatible with the intended matrix which the cord will reinforce. For a rubber belt, the coating is compatible with the rubber composition of the belt body or an adhesion gum or adhesive such as RFL which surrounds the cord. For RFL/rubber systems and cast polyurethane elastomers, a suitable polymer is the APP reaction product of a vinyl carboxylic acid or an ester or amide thereof. Suitable carboxylic acids include acrylic acid and methacrylic acid. Various esters and amides of vinyl carboxylic acid are also suitable, such as 2-hydroxyethyl methacrylate, N-isobutoxymethyl acrylamide, and N-hydroxyethyl acrylamide.
    Type: Application
    Filed: June 24, 2013
    Publication date: June 4, 2015
    Applicant: THE GATES CORPORATION
    Inventors: John Graeme Knox, Alexander Bismarck, Su Bai
  • Patent number: 8932165
    Abstract: A toothed belt includes a body, at least one tooth formed of the body, a jacket disposed along a peripheral surface of the at least one tooth and having a compressed thickness in the range from 0.5 mm to about 0.8 mm, and at least one cord embedded in the body and having a diameter. The at least one cord and said jacket have a ratio of said cord diameter to said jacket thickness of less than 1.8, and said cord diameter and said jacket thickness describe an optical belt PLD of about 1.2 mm or less.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: January 13, 2015
    Assignee: The Gates Corporation
    Inventor: John Graeme Knox
  • Publication number: 20140261753
    Abstract: A snap-in tire valve for mounting in a valve hole in a wheel rim, having a valve body and a resilient member having an overall shape including a groove and a rib adapted to snap into and be retained in the hole. The resilient member may include a rubber that is the reaction product of ethylene-propylene copolymer elastomer, a peroxide curative, zinc diacrylate or zinc dimethacrylate, and a high-density inert filler, such as barium sulfate. The resilient member may include a first and second rubber members of different compositions from each other and defining two layers under the groove. The thickness of the layer of the first rubber member is preferably greater than the thickness of the layer of the second rubber member.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: THE GATES CORPORATION
    Inventors: Donald James Burlett, John Graeme Knox
  • Publication number: 20140200108
    Abstract: A vulcanized rubber CVT belt in the form of an endless V-belt having a belt body with angled sides, a tensile cord layer of helically spiraled tensile cord embedded in the belt body, an overcord rubber layer, and an undercord rubber layer, wherein the tensile cord is a twisted, single-tow bundle of continuous-filament, carbon fiber impregnated with an adhesive treatment and/or overcoated with adhesive compatible with the rubber of the tensile cord layer. The tow may be 18K. The carbon fiber may have a filament diameter of from about 6.0 to about 6.4-micron, a tensile modulus of from about 200 to about 300 GPa, an elongation at break of from about 1.9% to about 2.3%.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: THE GATES CORPORATION
    Inventors: Ralph Michael Duke, John Graeme Knox
  • Publication number: 20140190622
    Abstract: A system and method of making an open-ended, reinforced, layered belt having a profile layer, a top layer material, and tensile cords fully encapsulated there between. The method includes engaging portion of the profile layer on a rotatable cylindrical mandrel with an engaging roller, disengaging with a take-off roller, and applying and fusing the cords to the profile layer at a desired cord spacing there between. The cord may be fused by melting the profile layer surface with a heated plow and/or with heated cord. The cord is then covered with the top layer material in a lamination step involving heating to melt at least a portion of the top layer and pressing it to fuse it to the reinforced profile layer. Lamination may be done downstream or directly on the mandrel.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: THE GATES CORPORATION
    Inventors: John Graeme Knox, Lambert Pasch
  • Patent number: 8672788
    Abstract: A vulcanized rubber CVT belt in the form of an endless V-belt having a belt body with angled sides, a tensile cord layer of helically spiraled tensile cord embedded in the belt body, an overcord rubber layer, and an undercord rubber layer, wherein the tensile cord is a twisted, single-tow bundle of continuous-filament, carbon fiber impregnated with an adhesive treatment and/or overcoated with adhesive compatible with the rubber of the tensile cord layer. The tow may be 18K. The carbon fiber may have a filament diameter of from about 6.0 to about 6.4-micron, a tensile modulus of from about 200 to about 300 GPa, an elongation at break of from about 1.9% to about 2.3%.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 18, 2014
    Assignee: The Gates Corporation
    Inventors: Ralph Michael Duke, John Graeme Knox
  • Patent number: 8668799
    Abstract: A system and method of making an open-ended, reinforced, layered belt having a profile layer, a top layer material, and tensile cords fully encapsulated there between. The method includes engaging portion of the profile layer on a rotatable cylindrical mandrel with an engaging roller, disengaging with a take-off roller, and applying and fusing the cords to the profile layer at a desired cord spacing there between. The cord may be fused by melting the profile layer surface with a heated plow and/or with heated cord. The cord is then covered with the top layer material in a lamination step involving heating to melt at least a portion of the top layer and pressing it to fuse it to the reinforced profile layer. Lamination may be done downstream or directly on the mandrel.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 11, 2014
    Assignee: The Gates Corporation
    Inventors: John Graeme Knox, Lambert Pasch, Mark William Scharr