Patents by Inventor Graeme Malcolm

Graeme Malcolm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210273398
    Abstract: A method and system for combining two or more optical fields is disclosed. A first continuous-wave high powered output field generated by a solid-state master laser is injected into a first solid state optical amplifier to produce a single output field from the laser system that exhibits a high phase-coherence with the output field of the master laser. The power of the output field equals the sum of powers of the master laser and that generated by the first optical amplifier, while exhibiting similar beams characteristics to that produced by the output field of the master laser i.e. it exhibits low noise, in a single transverse and longitudinal mode Gaussian beam, and has a single polarisation. The laser system is highly scalable in that N optical amplifiers may be located in series with the master laser to provide a single low noise, high power output field.
    Type: Application
    Filed: June 27, 2019
    Publication date: September 2, 2021
    Inventors: Graeme MALCOLM, Gareth MAKER, Stephen WEBSTER
  • Patent number: 10788369
    Abstract: An infrared detection system comprises the following elements. A laser source provides radiation for illuminating a target (5). This radiation is tuned to at least one wavelength in the fingerprint region of the infrared spectrum. A detector (32) detects radiation backscattered from the target (5). An analyser determines from at least the presence or absence of detected signal in said at least one wavelength whether a predetermined volatile compound is present. An associated detection method is also provided. In embodiments, the laser source is tunable over a plurality of wavelengths, and the detector comprises a hyperspectral imaging system. The laser source may be an optical parametric device has a laser gain medium for generating a pump beam in a pump laser cavity, a pump laser source and a nonlinear medium comprising a ZnGeP2 (ZGP) crystal.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: September 29, 2020
    Assignee: ITI SCOTLAND—SCOTTISH ENTERPRISE
    Inventors: Graeme Malcolm, Gordon Robertson
  • Publication number: 20190226911
    Abstract: An infrared detection system comprises the following elements. A laser source provides radiation for illuminating a target (5). This radiation is tuned to at least one wavelength in the fingerprint region of the infrared spectrum. A detector (32) detects radiation backscattered from the target (5). An analyser determines from at least the presence or absence of detected signal in said at least one wavelength whether a predetermined volatile compound is present. An associated detection method is also provided. In embodiments, the laser source is tunable over a plurality of wavelengths, and the detector comprises a hyperspectral imaging system. The laser source may be an optical parametric device has a laser gain medium for generating a pump beam in a pump laser cavity, a pump laser source and a nonlinear medium comprising a ZnGeP2 (ZGP) crystal.
    Type: Application
    Filed: February 15, 2019
    Publication date: July 25, 2019
    Inventors: Graeme Malcolm, Gordon Robertson
  • Patent number: 10247606
    Abstract: An infrared detection system comprises the following elements. A laser source provides radiation for illuminating a target (5). This radiation is tuned to at least one wavelength in the fingerprint region of the infrared spectrum. A detector (32) detects radiation backscattered from the target (5). An analyzer determines from at least the presence or absence of detected signal in said at least one wavelength whether a predetermined volatile compound is present. An associated detection method is also provided. In embodiments, the laser source is tunable over a plurality of wavelengths, and the detector comprises a hyperspectral imaging system. The laser source may be an optical parametric device has a laser gain medium for generating a pump beam in a pump laser cavity, a pump laser source and a nonlinear medium comprising a ZnGeP2 (ZGP) crystal.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 2, 2019
    Assignee: ITI SCOTLAND—SCOTTISH ENTERPRISE
    Inventors: Graeme Malcolm, Gordon Robertson
  • Patent number: 9523607
    Abstract: A tunable coherent radiation source comprises a pump laser which outputs a pump beam and a non-linear optical medium having a tuning pattern to provide tuning across a wavelength range. A translation system is arranged such that the pump beam is translated across the tuning pattern. The scanning pattern is formed such that translation of the pump beam across the tuning pattern provides one or more discontinuities in tuning across the wavelength range. A spectroscopic system and a hyperspectral imaging system comprising such a tunable coherent radiation source are described, as is a non-linear optical medium adapted for use in such a source. A method of providing coherent radiation tuned over a wavelength range is also described.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: December 20, 2016
    Assignee: ITI SCOTLAND—SCOTTISH ENTERPRISE
    Inventor: Graeme Malcolm
  • Patent number: 9454060
    Abstract: A mode locked semiconductor disk laser with an output beam having an ultra-short pulse length which provides the incident beam to a non linear microscope. The wavelength of the beam is at or near the action cross section maximum absorption wavelength for creating two photon excited fluorescence of a fluorescent biological marker in a sample. Semiconductor disk lasers combine excellent beam quality and output power, stability while maintaining simplicity and easiness of operation. In addition, these types of lasers are ideally suited for mass production as they are built in wafer-scale technology enabling a high level of integration. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable non-linear bio-imaging devices for clinical studies, facilitating its wide-spread adoption in “real-life” applications.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 27, 2016
    Assignee: The University of Dundee
    Inventors: Craig Hamilton, Graeme Malcolm, Ursula Keller, Thomas Sudmeyer, Kurt Weingarten, Pablo Loza-Alvarez, Yohan Barbarin, Edik Rafailov
  • Publication number: 20160208206
    Abstract: The invention provides a maturation apparatus and associated method that reduces fluid loss from one or more casks during a maturation process by sealably enclosing the casks in an intermodal container. The intermodal container provides an expansion volume to receive fluid vapour from the casks which assists in reducing product loss via evaporation and in reducing the problematic effects associated with fungi that often form in the vicinity of a distillery or other spirit maturation facilities. The maturation apparatus may further comprise a vapour detection system and or an environmental control system. The use of intermodal containers within the maturation apparatus provides a number of significant advantages for the transportation and storage of the casks during the maturation process.
    Type: Application
    Filed: September 10, 2014
    Publication date: July 21, 2016
    Inventors: John NICHOLLS, Graeme MALCOLM
  • Publication number: 20150260572
    Abstract: An infrared detection system comprises the following elements. A laser source provides radiation for illuminating a target (5). This radiation is tuned to at least one wavelength in the fingerprint region of the infrared spectrum. A detector (32) detects radiation backscattered from the target (5). An analyser determines from at least the presence or absence of detected signal in said at least one wavelength whether a predetermined volatile compound is present. An associated detection method is also provided. In embodiments, the laser source is tunable over a plurality of wavelengths, and the detector comprises a hyperspectral imaging system. The laser source may be an optical parametric device has a laser gain medium for generating a pump beam in a pump laser cavity, a pump laser source and a nonlinear medium comprising a ZnGeP2 (ZGP) crystal.
    Type: Application
    Filed: August 30, 2013
    Publication date: September 17, 2015
    Inventors: Graeme Malcolm, Gordon Robertson
  • Publication number: 20150185077
    Abstract: A tunable coherent radiation source comprises a pump laser which outputs a pump beam and a non-linear optical medium having a tuning pattern to provide tuning across a wavelength range. A translation system is arranged such that the pump beam is translated across the tuning pattern. The scanning pattern is formed such that translation of the pump beam across the tuning pattern provides one or more discontinuities in tuning across the wavelength range. A spectroscopic system and a hyperspectral imaging system comprising such a tunable coherent radiation source are described, as is a non-linear optical medium adapted for use in such a source. A method of providing coherent radiation tuned over a wavelength range is also described.
    Type: Application
    Filed: June 12, 2013
    Publication date: July 2, 2015
    Inventor: Graeme Malcolm
  • Publication number: 20140016185
    Abstract: A mode locked semiconductor disk laser with an output beam having an ultra-short pulse length which provides the incident beam to a non linear microscope. The wavelength of the beam is at or near the action cross section maximum absorption wavelength for creating two photon excited fluorescence of a fluorescent biological marker in a sample. Semiconductor disk lasers combine excellent beam quality and output power, stability while maintaining simplicity and easiness of operation. In addition, these types of lasers are ideally suited for mass production as they are built in wafer-scale technology enabling a high level of integration. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable non-linear bio-imaging devices for clinical studies, facilitating its wide-spread adoption in “real-life” applications.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 16, 2014
    Applicant: THE UNIVERSITY OF DUNDEE
    Inventors: Craig Hamilton, Graeme Malcolm, Ursula Keller, Thomas Sudmeyer, Kurt Weingarten, Pablo Loza-Alvarez, Yohan Barbarin, Edik Rafailov