Patents by Inventor Graham A. Wright
Graham A. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250090809Abstract: A steering device and navigation system for interventional procedures. Included are devices, systems, and methods that incorporate a steering device which consists of an expandable structure that can be controlled to spread out within the vessel lumen, or cardiac chamber, and may apply circumferential force to the tissue. This structure, once spread out, can anchor relative to the anatomy and provides support for an internal catheter through a set of strings connected to the internal catheter. The internal catheter is configured to allow an interventional device, such as a guidewire or catheter, to pass through it. Using the strings that are connected to actuation mechanisms within the device's handle, the internal catheter can be manipulated to allow 10 controlling the position of a device that runs within it or is connected to it and can be used for the purpose of navigation of devices and obtaining measurements from known positions.Type: ApplicationFiled: November 27, 2024Publication date: March 20, 2025Applicant: MAGELLAN BIOMEDICAL INC.Inventors: Mohammad Ali TAVALLAEI, Emily Man-Sheun LAM, James Jiewen ZHOU, Graham A. Wright
-
Publication number: 20250079113Abstract: An ion source with a sputter target located at the end of the ion source is disclosed. The ion source may include an indirectly heated cathode and the sputter target may be disposed on the end opposite the cathode. The ion source may contain one or more side electrodes, wherein at least one of these electrodes is electrically biased relative to the arc chamber. In one embodiment, the second end of the ion source is made of a dopant containing material and serves as the sputter target. In another embodiment, there is an opening in the second end, and an insert is disposed in this opening. The insert is made of a dopant containing material and serves as the sputter target.Type: ApplicationFiled: August 28, 2023Publication date: March 6, 2025Inventor: Graham Wright
-
Patent number: 12224149Abstract: An ion source for generating an ion beam containing aluminum ions is disclosed. The ion source includes a first gas source to introduce an organoaluminium compound into the arc chamber of the ion source. A second gas, different from the first gas, which is a chlorine-containing gas is also introduced to the arc chamber. The chloride co-flow reduces the buildup of decomposition material that occurs within the arc chamber. This buildup may occur at the gas bushing, the extraction aperture or near the repeller. In some embodiments, the second gas is introduced continuously. In other embodiments, the second gas is periodically introduced, based on hours of operation or the measured uniformity of the extracted ion beam. The second gas may be introduced from second gas source or from a vaporizer.Type: GrantFiled: January 20, 2023Date of Patent: February 11, 2025Assignee: Applied Materials, Inc.Inventors: Mateo Navarro Goldaraz, Graham Wright, Ori Noked
-
Patent number: 12194251Abstract: A steering device and navigation system for interventional procedures. Included are devices, systems, and methods that incorporate a steering device which consists of an expandable structure that can be controlled to spread out within the vessel lumen, or cardiac chamber, and may apply circumferential force to the tissue. This structure, once spread out, can anchor relative to the anatomy and provides support for an internal catheter through a set of strings connected to the internal catheter. The internal catheter is configured to allow an interventional device, such as a guidewire or catheter, to pass through it. Using the strings that are connected to actuation mechanisms within the device's handle, the internal catheter can be manipulated to allow controlling the position of a device that runs within it or is connected to it and can be used for the purpose of navigation of devices and obtaining measurements from known positions.Type: GrantFiled: May 1, 2019Date of Patent: January 14, 2025Assignee: MAGELLAN BIOMEDICAL INC.Inventors: Mohammad Ali Tavallaei, Emily Man-Sheun Lam, James Jiewen Zhou, Graham A. Wright
-
Patent number: 12154754Abstract: An ion source with a crucible is disclosed. In some embodiments, the crucible contains a solid dopant material, such as a metal. A porous wicking tip is disposed in the crucible in contact with the solid dopant material. The porous wicking tip may be a tube with one or more interior conduits. Alternatively, the porous tip may be two concentric cylinders with a plurality of rods disposed in the annular ring between the two cylinders. Alternatively, the porous tip may be one or more foil layers wound together. In each of these embodiments, the wicking tip can be used to control the flow rate of molten dopant material to the arc chamber.Type: GrantFiled: June 8, 2022Date of Patent: November 26, 2024Assignee: Applied Materials, Inc.Inventors: Craig R. Chaney, Graham Wright
-
Patent number: 12154753Abstract: An ion source capable of extracting a ribbon ion beam with improved uniformity is disclosed. One of the walls of the ion source has a protrusion on its interior surface facing the chamber. The protrusion creates a loss area that serves as a sink for free electrons and ions. This causes a reduction in plasma density near the protrusion, and may improve the uniformity of the ribbon ion beam that is extracted from the ion source by modifying the beam current near the protrusion. The shape of the protrusion may be modified to achieve the desired uniformity. The protrusion may also be utilized with a cylindrical ion source. In certain embodiments, the protrusion is created by a plurality of mechanically adjustable protrusion elements.Type: GrantFiled: September 13, 2021Date of Patent: November 26, 2024Assignee: Applied Materials, Inc.Inventors: Jay T. Scheuer, Graham Wright, Peter F. Kurunczi, Alexandre Likhanskii
-
Patent number: 12154766Abstract: An ion source that is capable of different modes of operation is disclosed. A vaporizer is in communication with the ion source. The ion source may have several gas inlets, in communication with different gasses. When operating in a first mode, the ion source may supply a first gas, such as an inert gas, while heating the vaporizer. When operating in a second mode, the ion source may supply a second gas, which may be an organoaluminium gas. When operating in a third mode, the ion source may supply the second gas, while heating the vaporizer. Ions having single charges may be created in the first and second modes, while ions having multiple charges may be created in the third mode.Type: GrantFiled: June 7, 2022Date of Patent: November 26, 2024Assignee: Applied Materials, Inc.Inventors: Graham Wright, Shardul S. Patel
-
Publication number: 20240331972Abstract: An actively cooled gas conduit for use with an ion source is disclosed. The gas conduit includes a gas channel and a cooling channel that may be adjacent to one another for at least a portion of the length of the gas channel. The gas conduit may be constructed by bonding two or more tubes together. Alternatively, the gas conduit may be constructed using additive manufacturing such that the cooling channel and the gas channel are within the same gas conduit. In some embodiments, the return channel is also disposed in the gas conduit. By actively cooling the gas conduit, the temperature of the gas conduit may be lowered, which reducing the possibility of clogging due to decomposition of the feed gas.Type: ApplicationFiled: March 29, 2023Publication date: October 3, 2024Inventors: Adam M. McLaughlin, Graham Wright, Mateo Navarro Goldaraz
-
Patent number: 12094681Abstract: An ion source that is capable of different modes of operation is disclosed. The ion source includes an insertable target holder includes a hollow interior into which the solid dopant material is disposed. The target holder may a porous surface at a first end, through which vapors from the solid dopant material may enter the arc chamber. The porous surface inhibits the passage of liquid or molten dopant material into the arc chamber. The target holder is also constructed such that it may be refilled with dopant material when the dopant material within the hollow interior has been consumed. A solid target is also disposed in the arc chamber. When the insertable target holder is used, multicharged ions are created. When the insertable target holder is retracted, single charged ions are created by only etching the solid dopant-containing compound.Type: GrantFiled: May 10, 2022Date of Patent: September 17, 2024Assignee: Applied Materials, Inc.Inventors: Graham Wright, Shardul S. Patel
-
Publication number: 20240249904Abstract: An ion source for generating an ion beam containing aluminum ions is disclosed. The ion source includes a first gas source to introduce an organoaluminium compound into the arc chamber of the ion source. A second gas, different from the first gas, which is a chlorine-containing gas is also introduced to the arc chamber. The chloride co-flow reduces the buildup of decomposition material that occurs within the arc chamber. This buildup may occur at the gas bushing, the extraction aperture or near the repeller. In some embodiments, the second gas is introduced continuously. In other embodiments, the second gas is periodically introduced, based on hours of operation or the measured uniformity of the extracted ion beam. The second gas may be introduced from second gas source or from a vaporizer.Type: ApplicationFiled: January 20, 2023Publication date: July 25, 2024Inventors: Mateo Navarro Goldaraz, Graham Wright, Ori Noked
-
Patent number: 12040154Abstract: An ion source that is capable of different modes of operation is disclosed. A solid target may be disposed in the arc chamber. The ion source may have several gas inlets, in communication with different gasses. When operating in a first mode, the ion source may supply a first gas, such as a halogen containing gas. When operating in a second mode, the ion source may supply an organoaluminium gas. Ions having single charges may be created in the first mode, while ions having multiple charges may be created in the second mode. In some embodiments, the solid target may be retractable.Type: GrantFiled: May 10, 2022Date of Patent: July 16, 2024Assignee: Applied Materials, Inc.Inventors: Graham Wright, Shardul S. Patel
-
Patent number: 11996281Abstract: An ion source that may be used to introduce a dopant material into the arc chamber is disclosed. A component containing the dopant material is disposed in the path of an etching gas, which also enters the arc chamber. In some embodiments, the dopant material is in liquid form, and the etching gas travels through the liquid. In other embodiments, the dopant material is a solid material. In some embodiments, the solid material is formed as a porous structure, such that the etching gas flows through the solid material. In other embodiments, one or more components of the ion source are manufactured using a material that includes the dopant material, such that the etching gas etches the component to release the dopant material.Type: GrantFiled: June 7, 2023Date of Patent: May 28, 2024Assignee: Applied Materials, Inc.Inventors: Graham Wright, Ori Noked, Craig R. Chaney, Adam M. McLaughlin
-
Publication number: 20240042597Abstract: A mechanism for actuation and control of a device, such as an interventional device, in two dimensions via a cable-driven arrangement. The mechanism can include multiple spring-loaded cam followers and a conical control surface acting as the cam. The translation of the conical cam results in the perpendicular linear motion of the cam followers. With the cables coupled to the cam followers from one end, and to the device of interest at the other end, the motion of the followers results in cable displacements that lead to the manipulation of the interventional device. Adjustment of the cable lengths are made possible with a proportion determined by the cam. This allows maintaining a set tension and while avoiding sagging. The resulting system can be an entirely passive mechanism in some embodiments that allows for accurate device position control, position estimation, and haptic feedback.Type: ApplicationFiled: December 8, 2021Publication date: February 8, 2024Applicant: MAGELLAN BIOMEDICAL INC.Inventors: Mohammad Ali Tavallaei, Amaar QUADRI, Graham A. WRIGHT, Alykhan SEWANI, James Jiewen ZHOU, Christopher J. MAGNIN
-
Patent number: 11887806Abstract: An ion source is provided. The ion source may include an ion chamber to generate an ion beam comprising a metal ion species; and a charge source, coupled to deliver a metal vapor to the ion chamber, the charge source including a charge mixture. The charge mixture may include a first portion, comprising an elemental metal; and a second portion, comprising a heterogeneous metal fluoride compound.Type: GrantFiled: April 7, 2022Date of Patent: January 30, 2024Assignee: Applied Materials, Inc.Inventors: Graham Wright, Ryan C. Prager
-
Patent number: 11854760Abstract: A crucible that exploits the observation that molten metal tends to flow toward the hottest regions is disclosed. The crucible includes an interior in which dopant material may be disposed. The crucible has a pathway leading from the interior toward an aperture, wherein the temperature is continuously increasing along the pathway. The aperture may be disposed in or near the interior of the arc chamber of an ion source. The liquid metal flows along the pathway toward the arc chamber, where it is vaporized and then ionized. By controlling the flow rate of the pathway, spillage may be reduced. In another embodiment, an inverted crucible is disclosed. The inverted crucible comprises a closed end in communication with the interior of the ion source, so that the closed end is the hottest region of the crucible. An opening is disposed on a different wall to allow vapor to exit the crucible.Type: GrantFiled: June 21, 2021Date of Patent: December 26, 2023Assignee: Applied Materials, Inc.Inventors: Graham Wright, Eric Donald Wilson, Daniel Alvarado, Robert C. Lindberg, Jacob Mullin
-
Publication number: 20230402247Abstract: An ion source with a crucible is disclosed. In some embodiments, the crucible contains a solid dopant material, such as a metal. A porous wicking tip is disposed in the crucible in contact with the solid dopant material. The porous wicking tip may be a tube with one or more interior conduits. Alternatively, the porous tip may be two concentric cylinders with a plurality of rods disposed in the annular ring between the two cylinders. Alternatively, the porous tip may be one or more foil layers wound together. In each of these embodiments, the wicking tip can be used to control the flow rate of molten dopant material to the arc chamber.Type: ApplicationFiled: June 8, 2022Publication date: December 14, 2023Inventors: Craig R. Chaney, Graham Wright
-
Publication number: 20230395357Abstract: An ion source that is capable of different modes of operation is disclosed. A vaporizer is in communication with the ion source. The ion source may have several gas inlets, in communication with different gasses. When operating in a first mode, the ion source may supply a first gas, such as an inert gas, while heating the vaporizer. When operating in a second mode, the ion source may supply a second gas, which may be an organoaluminium gas. When operating in a third mode, the ion source may supply the second gas, while heating the vaporizer. Ions having single charges may be created in the first and second modes, while ions having multiple charges may be created in the third mode.Type: ApplicationFiled: June 7, 2022Publication date: December 7, 2023Inventors: Graham Wright, Shardul S. Patel
-
Publication number: 20230369006Abstract: An ion source that is capable of different modes of operation is disclosed. The ion source includes an insertable target holder includes a hollow interior into which the solid dopant material is disposed. The target holder may a porous surface at a first end, through which vapors from the solid dopant material may enter the arc chamber. The porous surface inhibits the passage of liquid or molten dopant material into the arc chamber. The target holder is also constructed such that it may be refilled with dopant material when the dopant material within the hollow interior has been consumed. The ion source may have several gas inlets. When the insertable target holder is used, the ion source may supply a first gas, such as a halogen containing gas. When operating in a second mode, the ion source may utilize an organoaluminium gas.Type: ApplicationFiled: May 10, 2022Publication date: November 16, 2023Inventors: Graham Wright, Shardul S. Patel
-
Publication number: 20230369008Abstract: An ion source that is capable of different modes of operation is disclosed. The ion source includes an insertable target holder includes a hollow interior into which the solid dopant material is disposed. The target holder may a porous surface at a first end, through which vapors from the solid dopant material may enter the arc chamber. The porous surface inhibits the passage of liquid or molten dopant material into the arc chamber. The target holder is also constructed such that it may be refilled with dopant material when the dopant material within the hollow interior has been consumed. A solid target is also disposed in the arc chamber. When the insertable target holder is used, multicharged ions are created. When the insertable target holder is retracted, single charged ions are created by only etching the solid dopant-containing compound.Type: ApplicationFiled: May 10, 2022Publication date: November 16, 2023Inventors: Graham Wright, Shardul S. Patel
-
Patent number: D1051838Type: GrantFiled: December 10, 2021Date of Patent: November 19, 2024Assignee: Applied Materials, Inc.Inventors: Bon-Woong Koo, Frank Sinclair, Alexandre Likhanskii, Svetlana Radovanov, Alexander Perel, Graham Wright, Jay T. Scheuer, Daniel Tieger, You Chia Li, Jay Johnson, Tseh-Jen Hsieh, Ronald Johnson