Patents by Inventor Graham Trevor Reed

Graham Trevor Reed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230006760
    Abstract: A method of generating multiple channels of optical pulses comprises: providing a continuous wave optical input having an optical power; dividing the optical power of the optical input into equal consecutive slices in the time domain; and allocating the consecutive slices sequentially to two or more optical outputs such that each output forms a channel of optical pulses of equal pulse repetition rate shifted in time relative to the or each other channel.
    Type: Application
    Filed: November 26, 2020
    Publication date: January 5, 2023
    Inventors: Ke LI, David John THOMSON, Shenghao LIU, Graham Trevor REED, Weiwei ZHANG, Wei CAO
  • Patent number: 11418264
    Abstract: An optical modulation system comprises a signal source configured to generate an amplitude modulated electrical signal having a bandwidth and divided into frequency components comprising at least a first frequency component covering a first portion of the bandwidth and a second frequency component covering a second portion of the bandwidth; and an electro-optic modulator for receiving an input optical signal, the modulator having a first optical path and a second optical path, the input optical signal being divided between the first optical path and the second optical path and recombined after propagation along the first optical path and the second optical path to produce an output optical signal, and at least one of the first optical path and the second optical path comprising a phase shifter comprising a pair of electrodes in which each electrode is configured to receive a driving signal; wherein the or each phase shifter is coupled to the signal source to receive at least one of said frequency components a
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: August 16, 2022
    Assignee: University of Southampton
    Inventors: Graham Trevor Reed, Ke Li, Sheghao Liu, David John Thomson
  • Publication number: 20220131616
    Abstract: An optical modulation system comprises a signal source configured to generate an amplitude modulated electrical signal having a bandwidth and divided into frequency components comprising at least a first frequency component covering a first portion of the bandwidth and a second frequency component covering a second portion of the bandwidth; and an electro-optic modulator for receiving an input optical signal, the modulator having a first optical path and a second optical path, the input optical signal being divided between the first optical path and the second optical path and recombined after propagation along the first optical path and the second optical path to produce an output optical signal, and at least one of the first optical path and the second optical path comprising a phase shifter comprising a pair of electrodes in which each electrode is configured to receive a driving signal; wherein the or each phase shifter is coupled to the signal source to receive at least one of said frequency components a
    Type: Application
    Filed: February 26, 2020
    Publication date: April 28, 2022
    Inventors: Graham Trevor REED, Ke LI, Sheghao LIU, David John THOMSON
  • Patent number: 11209593
    Abstract: The disclosure provides a method of forming an erasable optical coupler in a photonic device comprising a conventional optical waveguide formed in a crystalline wafer. The method comprises selectively implanting ions in a localized region of the wafer material adjacent to the conventional waveguide of the photonic device, to cause modification of the crystal lattice structure of, and a change in refractive index in, the ion implanted region of the wafer material to thereby form an ion implanted waveguide optically coupled to the adjacent conventional waveguide to couple light out therefrom, or in thereto. The crystalline wafer material and ion implanted waveguide are such that the crystal lattice structure or composition can be modified to adjust or remove the optical coupling with the conventional waveguide by further modification of the refractive index in the ion implanted region.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: December 28, 2021
    Assignee: UNIVERSITY OF SOUTHAMPTON
    Inventors: Xia Chen, Milan Milosevic, Graham Trevor Reed, David John Thomson
  • Patent number: 11198951
    Abstract: A method of fabricating at least one single-crystal alloy semiconductor structure. At least one seed, containing an alloying material, on a substrate for growth of at least one single-crystal alloy semiconductor structure is formed. At least one structural form, formed of a host material, on the substrate is crystallized to form the at least one single-crystal alloy semiconductor structure. The at least one structural form is heated such that the material of the at least one structural form has a liquid state. Also, the at least one structural form is cooled, such that the material of the at least one structural form nucleates at the least one seed and crystallizes as a single crystal to provide at least one single-crystal alloy semiconductor structure, with a growth front of the single crystal propagating in a main body of the respective structural form away from the respective seed.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: December 14, 2021
    Assignee: University of Southampton
    Inventors: Frederic Yannick Gardes, Graham Trevor Reed, Callum George Littlejohns
  • Patent number: 10991585
    Abstract: A method of trimming the refractive index of material forming at least part of one or more structures integrated in one or more pre-fabricated devices, the method comprising: implanting one or more first regions of material of one or more pre-fabricated devices, encompassing at least partially one or more device structures, with ions to alter the crystal form of the material within the one or more first regions and change the refractive index of the material within the one or more first regions; and heat treating one or more second regions of material of the one or more devices, encompassing at least partially the one or more first regions, to alter the crystal form of the material within the one or more first regions encompassed by the one or more second regions and change the refractive index thereof, thereby trimming the refractive index of the material of at least part of the one or more device structures, such that the one or more device structures provide one or more predetermined device outputs.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: April 27, 2021
    Assignee: University of Southampton
    Inventors: David John Thomson, Graham Trevor Reed, Robert Topley
  • Publication number: 20200088943
    Abstract: The disclosure provides a method of forming an erasable optical coupler in a photonic device comprising a conventional optical waveguide formed in a crystalline wafer. The method comprises selectively implanting ions in a localized region of the wafer material adjacent to the conventional waveguide of the photonic device, to cause modification of the crystal lattice structure of, and a change in refractive index in, the ion implanted region of the wafer material to thereby form an ion implanted waveguide optically coupled to the adjacent conventional waveguide to couple light out therefrom, or in thereto. The crystalline wafer material and ion implanted waveguide are such that the crystal lattice structure or composition can be modified to adjust or remove the optical coupling with the conventional waveguide by further modification of the refractive index in the ion implanted region.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 19, 2020
    Applicant: University of Southampton
    Inventors: Xia Chen, Milan Milosevic, Graham Trevor Reed, David John Thomson
  • Publication number: 20190035632
    Abstract: A method of trimming the refractive index of material forming at least part of one or more structures integrated in one or more pre-fabricated devices, the method comprising: implanting one or more first regions of material of one or more pre-fabricated devices, encompassing at least partially one or more device structures, with ions to alter the crystal form of the material within the one or more first regions and change the refractive index of the material within the one or more first regions; and heat treating one or more second regions of material of the one or more devices, encompassing at least partially the one or more first regions, to alter the crystal form of the material within the one or more first regions encompassed by the one or more second regions and change the refractive index thereof, thereby trimming the refractive index of the material of at least part of the one or more device structures, such that the one or more device structures provide one or more predetermined device outputs.
    Type: Application
    Filed: January 23, 2017
    Publication date: January 31, 2019
    Inventors: David John THOMSON, Graham Trevor REED, Robert TOPLEY
  • Publication number: 20170175294
    Abstract: A method of fabricating at least one single-crystal alloy semiconductor structure, comprising: forming at least one seed on a substrate for growth of at least one single-crystal alloy semiconductor structure, the at least one seed containing an alloying material; providing at least one structural form on the substrate which is crystallized to form the at least one single-crystal alloy semiconductor structure, the at least one structural form being formed of a host material and comprising a main body which extends from the at least one seed and a plurality of elements which are connected in spaced relation to the main body; heating the at least one structural form such that the material of the at least one structural form has a liquid state; and cooling the at least one structural form, such that the material of the at least one structural form nucleates at the least one seed and crystallizes as a single crystal to provide at least one single-crystal alloy semiconductor structure, with a growth front of the si
    Type: Application
    Filed: June 5, 2015
    Publication date: June 22, 2017
    Inventors: Frederic Yannick Gardes, Graham Trevor Reed, Callum George Johns
  • Patent number: 9494741
    Abstract: Apparatus comprising at least one optical device (106) optically coupled to at least one waveguide (111) on an optical chip (100), characterized in that: (i) the optical device (106) is optically aligned with the waveguide (111) by aligning means (114, 116); (ii) the aligning means (114, 116) comprises at least one male member (114) and at least one female (116) member which locate together; (iii) one of the male member (114) and the female member (116) is positioned on the optical chip (100); (iv) the other one of the male member (114) and the female member (116) is positioned on a capping chip (102); and (v) the apparatus includes a mirror (108) for reflecting light from the optical device (106) to the waveguide (111).
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: November 15, 2016
    Assignee: University of Southampton
    Inventors: Frederic Yannick Gardes, David John Thomson, Graham Trevor Reed, Harold Meng Hoon Chong, Scott Ashley Reynolds
  • Publication number: 20160018601
    Abstract: Apparatus comprising at least one optical device (106) optically coupled to at least one waveguide (111) on an optical chip (100), characterised in that: (i) the optical device (106) is optically aligned with the waveguide (111) by aligning means (114, 116); (ii) the aligning means (114, 116) comprises at least one male member (114) and at least one female (116) member which locate together; (iii) one of the male member (114) and the female member (116) is positioned on the optical chip (100); (iv) the other one of the male member (114) and the female member (116) is positioned on a capping chip (102); and (v) the apparatus includes a mirror (108) for reflecting light from the optical device (106) to the waveguide (111).
    Type: Application
    Filed: December 3, 2013
    Publication date: January 21, 2016
    Inventors: Frederic Yannick Gardes, David John Thomson, Graham Trevor Reed, Harold Meng Hoon Chong, Scott Ashley Reynolds