Patents by Inventor Grant A. Neitzell
Grant A. Neitzell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250143573Abstract: A medical includes a first device configured to receive data from a medical device, determine based on the data that the patient is experiencing an acute health event, and in response to determining that the patient is experiencing the acute heath event, broadcast a message to a plurality of computing devices. The plurality of devices includes a second device configured to receive the message from the first device and establish a communication session with the first device in response to receiving the message.Type: ApplicationFiled: January 30, 2023Publication date: May 8, 2025Inventors: Christopher D. Koch, Christopher T. House, Laura J. Philippsen, Grant A. Neitzell, Abhijit P. Jejurkar, Paul G. Krause
-
Publication number: 20250114049Abstract: A system comprising processing circuitry configured to receive a wirelessly-transmitted messages from a patient or responder via one of their devices, the messages indicating a verified connection with that patient or responder device and a current location of the patient. After a number of messages, the processing circuitry generates an activity profile for the patient or responder such that in response to a next message, the processing circuitry is configured to determine a level of responsiveness to attribute to the patient or responder and coordinate an emergency response to the patient's current location based on the level of responsiveness.Type: ApplicationFiled: January 30, 2023Publication date: April 10, 2025Inventors: Christopher D. Koch, Grant A. Neitzell, Abhijit P. Jejurkar, Paul G. Krause, Christopher T. House
-
Publication number: 20250098960Abstract: An example system includes communication circuitry configured to communicate with a medical device system, memory communicatively coupled to the communication circuitry and being configured to store an identifier associated with the medical device system and a subscription service level of a patient, and processing circuitry communicatively coupled to the communication circuitry and the memory. The processing circuitry is configured to control the communication circuitry to receive a communication associated with the medical device system, the communication comprising an identifier. The processing circuitry is configured to determine, based on the identifier, the subscription service level of the patient. The processing circuitry is configured to generate, based on the subscription service level of the patient, a configuration message and control the communication circuitry to transmit the configuration message to the medical device system.Type: ApplicationFiled: February 9, 2023Publication date: March 27, 2025Inventors: Grant A. Neitzell, Abhijit P. Jejurkar, Leonardo Rapallini, Paul G. Krause, Charles A. Sarbib-Brown, Shuang Liang
-
Patent number: 12251231Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P-wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.Type: GrantFiled: December 5, 2022Date of Patent: March 18, 2025Assignee: Medtronic, Inc.Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan D. Wyszynski
-
Patent number: 12232851Abstract: A system comprises processing circuitry and memory comprising program instructions that, when executed by the processing circuitry, cause the processing circuitry to: apply a first set of rules to first patient parameter data for a first determination of whether sudden cardiac arrest of a patient is detected; determine that a one or more context criteria of the first determination are satisfied; and in response to satisfaction of the context criteria, apply a second set of rules to second patient parameter data for a second determination of whether sudden cardiac arrest of the patient is detected. At least the second set of rules comprises a machine learning model, and the second patient parameter data comprises at least one patient parameter that is not included in the first patient parameter data.Type: GrantFiled: April 30, 2021Date of Patent: February 25, 2025Assignee: Medtronic, Inc.Inventors: Yong K. Cho, Ryan D. Wyszynski, Grant A. Neitzell, Paul G. Krause, Kevin T. Ousdigian, Paul J. DeGroot, Shantanu Sarkar, Christopher D. Koch
-
Publication number: 20240312623Abstract: A device comprising a computer-readable medium having executable instructions stored thereon, configured to be executable by processing circuitry for causing the processing circuitry to: determine that a patient is experiencing or has experienced an acute health event; cause a motor to move a robotic device to a location proximate the patient; cause a sensor of the robotic device to gather physiological data from the patient; confirm that the patient is experiencing or has experienced the acute health event based on the physiological data; and generate an output in response to confirming that the patient is experiencing or has experienced the acute health event.Type: ApplicationFiled: February 17, 2022Publication date: September 19, 2024Inventors: Grant A. Neitzell, Shantanu Sarkar, Paul G. Krause, Yong K. Cho, Kevin T. Ousdigian, Ryan D. Wyszynski, Christopher D. Koch
-
Publication number: 20240148303Abstract: Example devices, systems, and techniques are disclosed for providing guidance of a treatment of a patient. An example device includes processing circuitry and memory comprising instructions that, when executed by the processing circuitry, cause the processing circuitry to determine that a device detected an acute health event of a patient or delivery of cardiopulmonary resuscitation to the patient, and analyze sensed patient data in response to the determination. The instructions cause the processing circuitry to provide information for guidance of a treatment of the patient based on the analysis.Type: ApplicationFiled: February 17, 2022Publication date: May 9, 2024Inventors: Kevin T. Ousdigian, Paul G. Krause, Ryan D. Wyszynski, Megan Connolly, Grant A. Neitzell, Christopher D. Koch
-
Publication number: 20240148332Abstract: Devices, systems, and techniques are disclosed for verifying the occurrence of an acute health event. An example device includes communication circuitry configured to receive a communication indicative of an acute health event of a patient and memory communicatively coupled to the communication circuitry and being configured to store the indication of the acute health event. The device includes processing circuitry communicatively coupled to the communication circuitry and the memory. The processing circuitry is configured to, in response to the communication, verify the acute health event and based on the verification of the acute health event, send an alert regarding the acute health event.Type: ApplicationFiled: February 10, 2022Publication date: May 9, 2024Inventors: Paul G. Krause, Robert W. Stadler, Paul J. DeGroot, Ryan D. Wyszynski, Megan Connolly, Grant A. Neitzell, Shantanu Sarkar, Christopher D. Koch, Yong K. Cho, Ana C. Natera, Kevin T. Ousdigian, Wade M. Demmer, Abhijit P. Jejurkar
-
Publication number: 20230263406Abstract: An example device of a patient includes an antenna configured to wirelessly receive communication from a medical device; and processing circuitry coupled to the antenna and configured to: determine that the received communication indicates that a patient is experiencing an acute health event; in response to the determination, determine one or more physical states of the patient based on sensed data from one or more sensors; confirm that the patient is not experiencing the acute health event based on the determined one or more physical states; and output information based on the confirmation that the patient is not experiencing the acute health event.Type: ApplicationFiled: April 19, 2023Publication date: August 24, 2023Inventors: Robert W. Stadler, Ryan D. Wyszynski, Paul J. DeGroot, Shantanu Sarkar, Paul G. Krause, Kevin T. Ousdigian, Grant A. Neitzell, Christopher D. Koch
-
Patent number: 11633112Abstract: An example device of a patient includes an antenna configured to wirelessly receive communication from a medical device; and processing circuitry coupled to the antenna and configured to: determine that the received communication indicates that a patient is experiencing an acute health event; in response to the determination, determine one or more physical states of the patient based on sensed data from one or more sensors; confirm that the patient is not experiencing the acute health event based on the determined one or more physical states; and output information based on the confirmation that the patient is not experiencing the acute health event.Type: GrantFiled: April 30, 2021Date of Patent: April 25, 2023Assignee: Medtronic, Inc.Inventors: Robert W. Stadler, Ryan D. Wyszynski, Paul J. DeGroot, Shantanu Sarkar, Paul G. Krause, Kevin T. Ousdigian, Grant A. Neitzell, Christopher D. Koch
-
Publication number: 20230102092Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P-wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.Type: ApplicationFiled: December 5, 2022Publication date: March 30, 2023Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan D. Wyszynski
-
Patent number: 11517242Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P-wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.Type: GrantFiled: December 2, 2019Date of Patent: December 6, 2022Assignee: Medtronic, Inc.Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan Wyszynski
-
Publication number: 20220369937Abstract: A system comprises processing circuitry and memory comprising program instructions that, when executed by the processing circuitry, cause the processing circuitry to: apply a first set of rules to first patient parameter data for a first determination of whether sudden cardiac arrest of a patient is detected; determine that a one or more context criteria of the first determination are satisfied; and in response to satisfaction of the context criteria, apply a second set of rules to second patient parameter data for a second determination of whether sudden cardiac arrest of the patient is detected. At least the second set of rules comprises a machine learning model, and the second patient parameter data comprises at least one patient parameter that is not included in the first patient parameter data.Type: ApplicationFiled: April 30, 2021Publication date: November 24, 2022Inventors: Yong K. Cho, Ryan D. Wyszynski, Grant A. Neitzell, Paul G. Krause, Kevin T. Ousdigian, Paul J. DeGroot, Shantanu Sarkar, Christopher D. Koch
-
Publication number: 20220346725Abstract: A system comprising processing circuitry configured to receive a wirelessly-transmitted message from a medical device, the message indicating that the medical device detected an acute health event of the patient. In response to the message, the processing circuitry is configured to determine a location of the patient, determine an alert area based on the location of the patient, and control transmission of an alert of the acute heath event of the patient to any one or more computing devices of one or more potential responders within the alert area.Type: ApplicationFiled: April 30, 2021Publication date: November 3, 2022Inventors: Paul G. Krause, Christopher D. Koch, Ryan D. Wyszynski, Robert W. Stadler, Kevin T. Ousdigian, Grant A. Neitzell
-
Publication number: 20220280047Abstract: An example device of a patient includes an antenna configured to wirelessly receive communication from a medical device; and processing circuitry coupled to the antenna and configured to: determine that the received communication indicates that a patient is experiencing an acute health event; in response to the determination, determine one or more physical states of the patient based on sensed data from one or more sensors; confirm that the patient is not experiencing the acute health event based on the determined one or more physical states; and output information based on the confirmation that the patient is not experiencing the acute health event.Type: ApplicationFiled: April 30, 2021Publication date: September 8, 2022Inventors: Robert W. Stadler, Ryan D. Wyszynski, Paul J. DeGroot, Shantanu Sarkar, Paul G. Krause, Kevin T. Ousdigian, Grant A. Neitzell, Christopher D. Koch
-
Patent number: 10492706Abstract: Techniques and devices for implementing the techniques for adjusting atrial arrhythmia detection based on analysis of one or more P-wave sensing windows associated with one or more R-waves. An implantable medical device may determine signal characteristics of the cardiac signal within the P-wave sensing window, determine whether the cardiac signal within the sensing window corresponds to a P-wave based on the determined signal characteristics, determine a signal to noise ratio of the cardiac signal within the sensing window, update the arrhythmia score when the P wave is identified in the sensing window and the determined signal to noise ratio satisfies a signal to noise threshold.Type: GrantFiled: February 18, 2016Date of Patent: December 3, 2019Assignee: Medtronic, Inc.Inventors: Shantanu Sarkar, Daniel L. Hansen, Grant A. Neitzell, Jerry D. Reiland, Ryan Wyszynski
-
Patent number: 9962102Abstract: A method and implantable medical device for determining a flutter event in response to a cardiac signal that includes sensing the cardiac signal, determining a sensing window in response to the sensed cardiac signal, the sensing window having a first portion and a second portion. A first derivative signal and a second derivative signal are determined in response to the sensed cardiac signal within the first portion and the second portion of the sensing window, and a sum of amplitudes of the second derivative signal within one or both of the first portion and the second portion of the sensing window is determined, and the flutter event is determined in response to the determined sum of amplitudes.Type: GrantFiled: April 24, 2015Date of Patent: May 8, 2018Assignee: Medtronic, Inc.Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell
-
Patent number: 9936890Abstract: An implantable medical device and method for determining an atrial arrhythmia event that includes a cardiac sensing device comprising a housing having circuitry positioned therein, a plurality of electrodes electrically coupled to the circuitry to sense a cardiac signal, and a processor configured to generate an initial detection of an atrial arrhythmia event in response to an atrial arrhythmia threshold, determine whether a P-wave occurs during the initial detection, determine an adaptive threshold in response to the P-wave being detected, adjust the atrial arrhythmia threshold in response to the adaptive threshold, and generate a subsequent initial detection of an atrial arrhythmia event using the adjusted atrial arrhythmia threshold.Type: GrantFiled: October 29, 2015Date of Patent: April 10, 2018Assignee: Medtronic, Inc.Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell, Jerry D Reiland, Ryan Wyszynski
-
Patent number: 9675269Abstract: A method and implantable medical device for determining noise in response to a cardiac signal that includes sensing the cardiac signal, determining a sensing window in response to the sensed cardiac signal, the sensing window comprising a first portion and a second portion, determining a first derivative signal in response to the sensed cardiac signal within only one of the first portion and the second portion of the sensing window, determining a second derivative signal in response to the sensed cardiac signal within the one of the first portion and the second portion of the sensing window, determining whether an amplitude of the second derivative signal satisfies an amplitude threshold, and determining noise in response to the amplitude of the second derivative signal satisfying the amplitude threshold.Type: GrantFiled: April 24, 2015Date of Patent: June 13, 2017Assignee: Medtronic, Inc.Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell
-
Patent number: 9603543Abstract: A method and implantable medical device for determining an atrial arrhythmia event that includes sensing a cardiac signal, determining an atrial arrhythmia score for identifying the arrhythmia event in response to the sensed cardiac signal, determining a sensing window in response to the sensed cardiac signal, the sensing window having a first portion and a second portion, determining signal characteristics of the sensed cardiac signal within the first portion and within the second portion, determining whether the sensed cardiac signal within the first portion and within the second portion corresponds to a P-wave in response to the determined signal characteristics, determining whether a signal to noise ratio of the sensed cardiac signal within the first portion and the second portion of the sensing window is satisfied, determining whether to update the arrhythmia score in response to the determined P-wave and the determined signal to noise ratio, and determining whether to delivery an arrhythmia therapy in rType: GrantFiled: April 24, 2015Date of Patent: March 28, 2017Assignee: Medtronic, Inc.Inventors: Shantanu Sarkar, Daniel L Hansen, Grant A Neitzell, Jerry D Reiland, Ryan Wyszynski