Patents by Inventor Grant Andrew Frisken

Grant Andrew Frisken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230346214
    Abstract: Methods and apparatus are provided for optical coherence metrology or tomography across an extended area of an eye with improved registration. At least two optical coherence tomograms are acquired, with each tomogram containing data from regions of an anterior surface of the eye that are at least partially overlapping, and data from one or more deeper structures such as the retina or the anterior or posterior lens surfaces. The tomograms are then processed to register the data from the overlapping portions of the anterior surface regions, thereby registering the data from the deeper structures. In certain embodiments the reference arm of the apparatus comprises a compound reflector having at least two axially separated reflective surfaces for applying differential delays to different portions of the reference beam. The depth of field of the apparatus is thereby extended to enable measurement of eye length.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 2, 2023
    Inventors: Steven James FRISKEN, Grant Andrew FRISKEN
  • Patent number: 11730362
    Abstract: Methods and apparatus are provided for optical coherence metrology or tomography across an extended area of an eye with improved registration. At least two optical coherence tomograms are acquired, with each tomogram containing data from regions of an anterior surface of the eye that are at least partially overlapping, and data from one or more deeper structures such as the retina or the anterior or posterior lens surfaces. The tomograms are then processed to register the data from the overlapping portions of the anterior surface regions, thereby registering the data from the deeper structures. In certain embodiments the reference arm of the apparatus comprises a compound reflector having at least two axially separated reflective surfaces for applying differential delays to different portions of the reference beam. The depth of field of the apparatus is thereby extended to enable measurement of eye length.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: August 22, 2023
    Assignee: Cylite Pty Ltd
    Inventors: Steven James Frisken, Grant Andrew Frisken
  • Patent number: 11471039
    Abstract: Methods and apparatus are presented for obtaining high-resolution 3-D images of a sample over a range of wavelengths, optionally with polarisation-sensitive detection. In preferred embodiments a spectral domain OCT apparatus is used to sample the complex field of light reflected or scattered from a sample, providing full range imaging. In certain embodiments structured illumination is utilised to provide enhanced lateral resolution. In certain embodiments the resolution or depth of field of images is enhanced by digital refocusing or digital correction of aberrations in the sample. Individual sample volumes are imaged using single shot techniques, and larger volumes can be imaged by stitching together images of adjacent volumes.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: October 18, 2022
    Assignee: Cylite Pty Ltd
    Inventors: Steven James Frisken, Trevor Bruce Anderson, Armin Georg Segref, Grant Andrew Frisken
  • Publication number: 20220047156
    Abstract: Methods and apparatus are provided for optical coherence metrology or tomography across an extended area of an eye with improved registration. At least two optical coherence tomograms are acquired, with each tomogram containing data from regions of an anterior surface of the eye that are at least partially overlapping, and data from one or more deeper structures such as the retina or the anterior or posterior lens surfaces. The tomograms are then processed to register the data from the overlapping portions of the anterior surface regions, thereby registering the data from the deeper structures. In certain embodiments the reference arm of the apparatus comprises a compound reflector having at least two axially separated reflective surfaces for applying differential delays to different portions of the reference beam. The depth of field of the apparatus is thereby extended to enable measurement of eye length.
    Type: Application
    Filed: October 8, 2021
    Publication date: February 17, 2022
    Inventors: Steven James FRISKEN, Grant Andrew FRISKEN
  • Patent number: 11166630
    Abstract: Methods and apparatus are provided for optical coherence metrology or tomography across an extended area of an eye with improved registration. At least two optical coherence tomograms are acquired, with each tomogram containing data from regions of an anterior surface of the eye that are at least partially overlapping, and data from one or more deeper structures such as the retina or the anterior or posterior lens surfaces. The tomograms are then processed to register the data from the overlapping portions of the anterior surface regions, thereby registering the data from the deeper structures. In certain embodiments the reference arm of the apparatus comprises a compound reflector having at least two axially separated reflective surfaces for applying differential delays to different portions of the reference beam. The depth of field of the apparatus is thereby extended to enable measurement of eye length.
    Type: Grant
    Filed: January 20, 2018
    Date of Patent: November 9, 2021
    Assignee: Cylite Pty Ltd
    Inventors: Steven James Frisken, Grant Andrew Frisken
  • Publication number: 20210244278
    Abstract: Apparatus and methods are presented for non-contact in-vivo measurement of one or more properties of a cornea or tear film with spatial resolution. In certain embodiments the cornea/tear film is probed at substantially normal incidence with a converging array of beamlets from a multi-wavelength optical source, and the reflected light analysed interferometrically to generate a time sequence of pachymetry maps. Thickness variations arising from differences between the external and intraocular pressure, e.g. from the ocular pulse or externally applied pressure changes, are measured and analysed to obtain information on a biomechanical response of the cornea. In preferred embodiments the time variation in tear film thickness is measured and subtracted to yield normalised pachymetry data for the biomechanical analysis. In certain embodiments the apparatus is configured to measure the dynamics and profile of the tear film, using either converging or substantially parallel arrays of beamlets.
    Type: Application
    Filed: June 4, 2019
    Publication date: August 12, 2021
    Inventors: Steven James FRISKEN, Grant Andrew FRISKEN, Trevor Bruce ANDERSON
  • Publication number: 20200170501
    Abstract: Methods and apparatus are presented for obtaining high-resolution 3-D images of a sample over a range of wavelengths, optionally with polarisation-sensitive detection. In preferred embodiments a spectral domain OCT apparatus is used to sample the complex field of light reflected or scattered from a sample, providing full range imaging. In certain embodiments structured illumination is utilised to provide enhanced lateral resolution. In certain embodiments the resolution or depth of field of images is enhanced by digital refocusing or digital correction of aberrations in the sample. Individual sample volumes are imaged using single shot techniques, and larger volumes can be imaged by stitching together images of adjacent volumes.
    Type: Application
    Filed: January 13, 2020
    Publication date: June 4, 2020
    Inventors: Steven James Frisken, Trevor Bruce Anderson, Armin Georg Segref, Grant Andrew Frisken
  • Patent number: 10575724
    Abstract: Methods and apparatus are presented for obtaining high-resolution 3-D images of a sample over a range of wavelengths, optionally with polarisation-sensitive detection. In preferred embodiments a spectral domain OCT apparatus is used to sample the complex field of light reflected or scattered from a sample, providing full range imaging. In certain embodiments structured illumination is utilised to provide enhanced lateral resolution. In certain embodiments the resolution or depth of field of images is enhanced by digital refocusing or digital correction of aberrations in the sample. Individual sample volumes are imaged using single shot techniques, and larger volumes can be imaged by stitching together images of adjacent volumes.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: March 3, 2020
    Inventors: Steven James Frisken, Trevor Bruce Anderson, Armin Georg Segref, Grant Andrew Frisken
  • Publication number: 20190365220
    Abstract: Methods and apparatus are provided for optical coherence metrology or tomography across an extended area of an eye with improved registration. At least two optical coherence tomograms are acquired, with each tomogram containing data from regions of an anterior surface of the eye that are at least partially overlapping, and data from one or more deeper structures such as the retina or the anterior or posterior lens surfaces. The tomograms are then processed to register the data from the overlapping portions of the anterior surface regions, thereby registering the data from the deeper structures. In certain embodiments the reference arm of the apparatus comprises a compound reflector having at least two axially separated reflective surfaces for applying differential delays to different portions of the reference beam. The depth of field of the apparatus is thereby extended to enable measurement of eye length.
    Type: Application
    Filed: January 20, 2018
    Publication date: December 5, 2019
    Inventors: Steven James FRISKEN, Grant Andrew FRISKEN
  • Patent number: 10470655
    Abstract: Method and systems are presented for analysing a wavefront using a spectral wavefront analyser to extract optical phase and spectral information at a two dimensional array of sampling points across the wavefront, wherein the relative phase information between the sampling points is maintained. Methods and systems are also presented for measuring an eye by reflecting a wavefront of an eye and measuring the wavefront at a plurality of angles to provide a map of the off-axis relative wavefront curvature and aberration of the eye. The phase accuracy between wavelengths and sample points over a beam aperture offered by these methods and systems have a number of ocular applications including corneal and anterior eye tomography, high resolution retinal imaging, and wavefront analysis as a function of probe beam incident angle for determining myopia progression and for designing and testing lenses for correcting myopia.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: November 12, 2019
    Inventors: Steven James Frisken, Grant Andrew Frisken
  • Publication number: 20180228363
    Abstract: Methods and apparatus are presented for obtaining high-resolution 3-D images of a sample over a range of wavelengths, optionally with polarisation-sensitive detection. In preferred embodiments a spectral domain OCT apparatus is used to sample the complex field of light reflected or scattered from a sample, providing full range imaging. In certain embodiments structured illumination is utilised to provide enhanced lateral resolution. In certain embodiments the resolution or depth of field of images is enhanced by digital refocusing or digital correction of aberrations in the sample. Individual sample volumes are imaged using single shot techniques, and larger volumes can be imaged by stitching together images of adjacent volumes.
    Type: Application
    Filed: April 12, 2018
    Publication date: August 16, 2018
    Inventors: Steven James Frisken, Trevor Bruce Anderson, Armin Georg Segref, Grant Andrew Frisken
  • Publication number: 20180146851
    Abstract: Method and systems are presented for analysing a wavefront using a spectral wavefront analyser to extract optical phase and spectral information at a two dimensional array of sampling points across the wavefront, wherein the relative phase information between the sampling points is maintained. Methods and systems are also presented for measuring an eye by reflecting a wavefront of an eye and measuring the wavefront at a plurality of angles to provide a map of the off-axis relative wavefront curvature and aberration of the eye. The phase accuracy between wavelengths and sample points over a beam aperture offered by these methods and systems have a number of ocular applications including corneal and anterior eye tomography, high resolution retinal imaging, and wavefront analysis as a function of probe beam incident angle for determining myopia progression and for designing and testing lenses for correcting myopia.
    Type: Application
    Filed: January 29, 2018
    Publication date: May 31, 2018
    Inventors: Steven James Frisken, Grant Andrew Frisken
  • Patent number: 9955863
    Abstract: Methods and apparatus are presented for obtaining high-resolution 3-D images of a sample over a range of wavelengths, optionally with polarization-sensitive detection. In preferred embodiments a spectral domain OCT apparatus is used to sample the complex field of light reflected or scattered from a sample, providing full range imaging. In certain embodiments structured illumination is utilized to provide enhanced lateral resolution. In certain embodiments the resolution or depth of field of images is enhanced by digital refocusing or digital correction of aberrations in the sample. Individual sample volumes are imaged using single shot techniques, and larger volumes can be imaged by stitching together images of adjacent volumes.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: May 1, 2018
    Inventors: Steven James Frisken, Trevor Bruce Anderson, Armin Georg Segref, Grant Andrew Frisken
  • Patent number: 9913579
    Abstract: Method and systems are presented for analyzing a wavefront using a spectral wavefront analyzer to extract optical phase and spectral information at a two dimensional array of sampling points across the wavefront, wherein the relative phase information between the sampling points is maintained. Methods and systems are also presented for measuring an eye by reflecting a wavefront of an eye and measuring the wavefront at a plurality of angles to provide a map of the off-axis relative wavefront curvature and aberration of the eye. The phase accuracy between wavelengths and sample points over a beam aperture offered by these methods and systems have a number of ocular applications including corneal and anterior eye tomography, high resolution retinal imaging, and wavefront analysis as a function of probe beam incident angle for determining myopia progression and for designing and testing lenses for correcting myopia.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 13, 2018
    Inventors: Steven James Frisken, Grant Andrew Frisken
  • Patent number: 9861277
    Abstract: Interferometry-based methods and apparatus are presented for analyzing one or more wavefronts from a sample, in which the sample wavefronts are interfered with two or more reference wavefronts to produce two or more interferograms in a sufficiently short time period for the interferograms to be captured in a single exposure of an image capture device such as a CCD array. Each interferogram has a unique carrier frequency dependent on the angle between a respective pair of sample and reference wavefronts. In certain embodiments multiple sample and/or reference wavefronts are generated using scanning mirrors, while in other embodiments utilizing multi-wavelength beams multiple sample and/or reference wavefronts are generated with wavelength dispersive elements. The methods and apparatus are suitable for measuring aberrations at one or more positions on the retina of an eye.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: January 9, 2018
    Inventors: Trevor Bruce Anderson, Steven James Frisken, Grant Andrew Frisken, Armin Georg Segref
  • Publication number: 20160345820
    Abstract: Methods and apparatus are presented for obtaining high-resolution 3-D images of a sample over a range of wavelengths, optionally with polarisation-sensitive detection. In preferred embodiments a spectral domain OCT apparatus is used to sample the complex field of light reflected or scattered from a sample, providing full range imaging. In certain embodiments structured illumination is utilised to provide enhanced lateral resolution. In certain embodiments the resolution or depth of field of images is enhanced by digital refocusing or digital correction of aberrations in the sample. Individual sample volumes are imaged using single shot techniques, and larger volumes can be imaged by stitching together images of adjacent volumes.
    Type: Application
    Filed: May 27, 2016
    Publication date: December 1, 2016
    Inventors: Steven James Frisken, Trevor Bruce Anderson, Armin Georg Segref, Grant Andrew Frisken
  • Publication number: 20160135680
    Abstract: Interferometry-based methods and apparatus are presented for analysing one or more wavefronts from a sample, in which the sample wavefronts are interfered with two or more reference wavefronts to produce two or more interferograms in a sufficiently short time period for the interferograms to be captured in a single exposure of an image capture device such as a CCD array. Each interferogram has a unique carrier frequency dependent on the angle between a respective pair of sample and reference wavefronts. In certain embodiments multiple sample and/or reference wavefronts are generated using scanning mirrors, while in other embodiments utilising multi-wavelength beams multiple sample and/or reference wavefronts are generated with wavelength dispersive elements. The methods and apparatus are suitable for measuring aberrations at one or more positions on the retina of an eye.
    Type: Application
    Filed: June 20, 2014
    Publication date: May 19, 2016
    Inventors: Trevor Bruce Anderson, Steven James Frisken, Grant Andrew Frisken, Armin Georg Segref
  • Publication number: 20160135679
    Abstract: Method and systems are presented for analysing a wavefront using a spectral wavefront analyser to extract optical phase and spectral information at a two dimensional array of sampling points across the wavefront, wherein the relative phase information between the sampling points is maintained. Methods and systems are also presented for measuring an eye by reflecting a wavefront of an eye and measuring the wavefront at a plurality of angles to provide a map of the off-axis relative wavefront curvature and aberration of the eye. The phase accuracy between wavelengths and sample points over a beam aperture offered by these methods and systems have a number of ocular applications including corneal and anterior eye tomography, high resolution retinal imaging, and wavefront analysis as a function of probe beam incident angle for determining myopia progression and for designing and testing lenses for correcting myopia.
    Type: Application
    Filed: June 20, 2014
    Publication date: May 19, 2016
    Inventors: Steven James Frisken, Grant Andrew Frisken