Patents by Inventor Grant Bishop

Grant Bishop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11756006
    Abstract: An example embodiment of the present invention provides a method of assessing the condition of a pavement site, comprising: (a) acquiring aerial images of the site from above, for example by an unmanned aerial system (UAS); (b) using photogrammetry tools to generate an orthomosaic that represents the airport pavement surface; (c) using image analysis tools and machine learning methods to determine the location and extent of defects in the pavement; (c) producing an image representation of the site and the defects, where the location and extent of defects are discernible from the image; (d) using software application techniques to store and present defect data and other related information for client-side user access.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: September 12, 2023
    Assignee: BYE UAS LLC
    Inventors: Grant Bishop, Valerie Saur, Shihlin Lu, Michael Fuller, Juan Naputi, Christopher Davis Smith, Kevin Sasso, April Kim, Daniel Serna
  • Publication number: 20210350524
    Abstract: An example embodiment of the present invention provides a method of assessing the condition of a pavement site, comprising: (a) acquiring aerial images of the site from above, for example by an unmanned aerial system (UAS); (b) using photogrammetry tools to generate an orthomosaic that represents the airport pavement surface; (c) using image analysis tools and machine learning methods to determine the location and extent of defects in the pavement; (c) producing an image representation of the site and the defects, where the location and extent of defects are discernible from the image; (d) using software application techniques to store and present defect data and other related information for client-side user access.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 11, 2021
    Inventors: Grant Bishop, Valerie Saur, Shihlin Lu, Michael Fuller, Juan Naputi, Christopher Davis Smith, Kevin Sasso, April Kim, Daniel Serna
  • Patent number: 11112265
    Abstract: Computer systems configured to dynamically control localized media are provided. Computer systems comprising processing circuitry configured to dynamically direct and/or react based on a user's choice along a path in a non-linear fashion are provided. Methods are provided for providing a computer aided tour, the method comprising creating, operating, sorting, managing and/or maintaining a collection of dynamically controlled localized media experiences and/or tours.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: September 7, 2021
    Assignee: ChariTrek, Inc.
    Inventor: Grant Bishop
  • Patent number: 8362946
    Abstract: A short range millimeter wave surface imaging radar system. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned transmit antenna to produce a narrow transmit beam in a first scanned direction (such as the vertical direction) corresponding to the scanned millimeter wave frequencies. The transmit antenna is scanned to transmit beam in a second direction perpendicular to the first scanned direction (such as the horizontal or the azimuthal direction) so as to define a two-dimensional field of view. Reflected millimeter wave radiation is collected in a receive frequency scanned antenna co-located (or approximately co-located) with the transmit antenna and adapted to produce a narrow receive beam approximately co-directed in the same directions as the transmitted beam in approximately the same field of view.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: January 29, 2013
    Assignee: Trex Enterprises Corp.
    Inventors: Grant Bishop, John A. Lovberg, Vladimir Kolinko
  • Patent number: 8362948
    Abstract: A long range millimeter wave imaging radar system. Preferred embodiments are positioned to detect foreign object debris objects on surface of the runway, taxiways and other areas of interest. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned antenna to produce a narrow scanned transmit beam in a first scanned direction (such as the vertical direction) defining a narrow, approximately one dimensional, electronically scanned field of view corresponding to the scanned millimeter wave frequencies. The antenna is mechanically pivoted or scanned in a second scanned direction perpendicular to the first scanned direction so as to define a two-dimensional field of view.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: January 29, 2013
    Assignee: Trex Enterprises Corp
    Inventors: Vladimir Kolinko, Chris Sexton, Grant Bishop, John Lovberg
  • Publication number: 20120249363
    Abstract: A long range millimeter wave imaging radar system. Preferred embodiments are positioned to detect foreign object debris objects on surface of the runway, taxiways and other areas of interest. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned antenna to produce a narrow scanned transmit beam in a first scanned direction (such as the vertical direction) defining a narrow, approximately one dimensional, electronically scanned field of view corresponding to the scanned millimeter wave frequencies. The antenna is mechanically pivoted or scanned in a second scanned direction perpendicular to the first scanned direction so as to define a two-dimensional field of view.
    Type: Application
    Filed: December 22, 2011
    Publication date: October 4, 2012
    Inventors: Vladimir Kolinko, Chris Sexton, Grant Bishop, John Lovberg
  • Publication number: 20110199254
    Abstract: A short range millimeter wave surface imaging radar system. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned transmit antenna to produce a narrow transmit beam in a first scanned direction (such as the vertical direction) corresponding to the scanned millimeter wave frequencies. The transmit antenna is scanned to transmit beam in a second direction perpendicular to the first scanned direction (such as the horizontal or the azimuthal direction) so as to define a two-dimensional field of view. Reflected millimeter wave radiation is collected in a receive frequency scanned antenna co-located (or approximately co-located) with the transmit antenna and adapted to produce a narrow receive beam approximately co-directed in the same directions as the transmitted beam in approximately the same field of view.
    Type: Application
    Filed: August 13, 2010
    Publication date: August 18, 2011
    Inventors: Grant Bishop, John A. Lovberg, Vladimir Kolinko
  • Patent number: 7782251
    Abstract: A short range millimeter wave imaging radar system. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned transmit antenna to produce a narrow transmit beam in a first scanned direction (such as the vertical direction) corresponding to the scanned millimeter wave frequencies. The transmit antenna is scanned to transmit beam in a second direction perpendicular to the first scanned direction (such as the horizontal or the azimuthal direction) so as to define a two-dimensional field of view. Reflected millimeter wave radiation is collected in a receive frequency scanned antenna co-located (or approximately co-located) with the transmit antenna and adapted to produce a narrow receive beam approximately co-directed in the same directions as the transmitted beam in approximately the same field of view.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: August 24, 2010
    Assignee: Trex Enterprises Corp.
    Inventors: Grant Bishop, John Lovberg, Vladimar Kolinko
  • Publication number: 20090135051
    Abstract: A short range millimeter wave imaging radar system. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned transmit antenna to produce a narrow transmit beam in a first scanned direction (such as the vertical direction) corresponding to the scanned millimeter wave frequencies. The transmit antenna is scanned to transmit beam in a second direction perpendicular to the first scanned direction (such as the horizontal or the azimuthal direction) so as to define a two-dimensional field of view. Reflected millimeter wave radiation is collected in a receive frequency scanned antenna co-located (or approximately co-located) with the transmit antenna and adapted to produce a narrow receive beam approximately co-directed in the same directions as the transmitted beam in approximately the same field of view.
    Type: Application
    Filed: October 3, 2008
    Publication date: May 28, 2009
    Inventors: Grant Bishop, John Lovberg, Vladimar Kolinko