Patents by Inventor Greg Atwood

Greg Atwood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10522757
    Abstract: In various examples, dual resistive-material regions for a phase change material region are fabricated by initially forming a resistive material. Prior to forming the phase change material region over the resistive material, at least an upper portion of the resistive material is exposed to an implantation or plasma that increases the resistance of an upper portion of the resistive material relative to the remainder, or bulk, of the resistive material. As a result, in certain embodiments, the portion of the resistive material proximate to the phase change material region may be used as a heater because of a relatively, high resistance value of the resistive material, but the bulk of the resistive material has a relatively lower resistance value and, thus, does not increase the voltage drop and current usage of the device. Other methods and devices are disclosed.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: December 31, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Yudong Kim, Ilya V Karpov, Charles C. Kuo, Maria Santina Marangon, Tyler A. Lowrey, Greg Atwood
  • Patent number: 10522756
    Abstract: In various examples, a dual resistance heater for a phase change material region is fabricated by forming a resistive material. Prior to forming the phase change material region over the resistive material, at least an upper portion of the resistive material is exposed to an implantation or plasma that increases the resistance of an upper portion of the resistive material relative to the remainder, or bulk, of the resistive material. As a result, the portion of the resistive material proximate to the phase change material region forms a heater because of its high resistance value, but the bulk of the resistive material has a relatively lower resistance value and, thus, does not increase the voltage drop and current usage of the device. Other methods and devices are disclosed.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: December 31, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Yudong Kim, Ilya V Karpov, Charles C. Kuo, Maria Santina Marangon, Tyler A. Lowrey, Greg Atwood
  • Publication number: 20180138406
    Abstract: In various examples, dual resistive-material regions for a phase change material region are fabricated by initially forming a resistive material. Prior to forming the phase change material region over the resistive material, at least an upper portion of the resistive material is exposed to an implantation or plasma that increases the resistance of an upper portion of the resistive material relative to the remainder, or bulk, of the resistive material. As a result, in certain embodiments, the portion of the resistive material proximate to the phase change material region may be used as a heater because of a relatively, high resistance value of the resistive material, but the bulk of the resistive material has a relatively lower resistance value and, thus, does not increase the voltage drop and current usage of the device. Other methods and devices are disclosed.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Inventors: Yudong Kim, Ilya V. Karpov, Charles C. Kuo, Maria Santina Marangon, Tyler A. Lowrey, Greg Atwood
  • Patent number: 9159915
    Abstract: An ovonic threshold switch may be formed of a continuous chalcogenide layer. That layer spans multiple cells, forming a phase change memory. In other words, the ovonic threshold switch may be formed of a chalcogenide layer which extends, uninterrupted, over numerous cells of a phase change memory.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: October 13, 2015
    Assignee: Ovonyx, Inc.
    Inventors: Ilya V. Karpov, Sean Jong Lee, Yudong Kim, Greg Atwood
  • Publication number: 20150188050
    Abstract: A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device.
    Type: Application
    Filed: February 6, 2015
    Publication date: July 2, 2015
    Inventors: Yudong Kim, Ilya V. Karpov, Charles C. Kuo, Maria Santina Marangon, Tyler A. Lowrey, Greg Atwood
  • Patent number: 8952299
    Abstract: A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: February 10, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Yudong Kim, Ilya V Karpov, Charles C. Kuo, Greg Atwood, Maria Santina Marangon, Tyler A. Lowrey
  • Publication number: 20140104939
    Abstract: An ovonic threshold switch may be formed of a continuous chalcogenide layer. That layer spans multiple cells, forming a phase change memory. In other words, the ovonic threshold switch may be formed of a chalcogenide layer which extends, uninterrupted, over numerous cells of a phase change memory.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: Ovonyx, Inc.
    Inventors: Ilya V. Karpov, Sean Jong Lee, Yudong Kim, Greg Atwood
  • Publication number: 20140038379
    Abstract: A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 6, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Yudong Kim, Ilya V. Karpov, Charles C. Kuo, Greg Atwood, Maria Santina Marangon, Tyler A. Lowrey
  • Patent number: 8513576
    Abstract: A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Yudong Kim, Ilya V. Karpov, Charles C. Kuo, Greg Atwood, Maria Santina Marangon, Tyler Lowrey
  • Publication number: 20120100688
    Abstract: A phase change memory may be formed with an upper electrode self-aligned to a phase change memory element. In some embodiments, patterning techniques may be used to form the elements of the memory. The memory element may be formed as a sidewall spacer formed on both opposed sides of an elongate strip of material. The resulting elongate strip of phase change memory element material may then be singulated in the same etching step that forms the upper electrodes extending in the column direction. Thus, the memory elements may be singulated in the row direction, while, at the same time, the top electrodes are defined to extend continuously in the column direction.
    Type: Application
    Filed: January 5, 2012
    Publication date: April 26, 2012
    Inventors: DerChang Kau, Greg Atwood
  • Publication number: 20110155986
    Abstract: A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 30, 2011
    Inventors: Yudong Kim, Ilya V. Karpov, Charles C. Kuo, Greg Atwood, Maria Santina Marangon, Tyler Lowrey
  • Patent number: 7880123
    Abstract: A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: February 1, 2011
    Inventors: Yudong Kim, Ilya V. Karpov, Charles C. Kuo, Greg Atwood, Maria Santina Marangon, Tyler Lowrey
  • Publication number: 20100165716
    Abstract: A memory device including a plurality of memory cells being arranged in a matrix having a plurality of rows and a plurality of columns. Each memory cell includes a storage element and a selector for selecting the corresponding storage element during a reading operation or a programming operation. The memory device further including a plurality of row lines each one for selecting the memory cells of a corresponding row and a plurality of column lines each one for selecting the memory cells of a corresponding column. The memory device further includes for each line among the row lines and/or the column lines a respective set of local lines each one for selecting a group of memory cells of the corresponding line, and a respective set of selection elements each one for selecting a corresponding local line of the set in response to the selection of the respective line.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Applicant: STMicroelectronics S.r.l.
    Inventors: Derchang Kau, Greg Atwood, Gianpaolo Spadini
  • Patent number: 7709822
    Abstract: Both a chalcogenide select device and a chalcogenide memory element are formed within vias within dielectrics. As a result, the chalcogenides is effectively trapped within the vias and no glue or adhesion layer is needed. Moreover, delamination problems are avoided. A lance material is formed within the same via with the memory element. In one embodiment, the lance material is made thinner by virtue of the presence of a sidewall spacer; in another embodiment no sidewall spacer is utilized. A relatively small area of contact between the chalcogenide used to form a memory element and the lance material is achieved by providing a pin hole opening in a dielectric, which separates the chalcogenide and the lance material.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 4, 2010
    Assignee: STMicroeletronics S.r.l.
    Inventors: Ilya V. Karpov, Charles C. Kuo, Yudong Kim, Greg Atwood
  • Publication number: 20090194756
    Abstract: A phase change memory may be formed with an upper electrode self-aligned to a phase change memory element. In some embodiments, patterning techniques may be used to form the elements of the memory. The memory element may be formed as a sidewall spacer formed on both opposed sides of an elongate strip of material. The resulting elongate strip of phase change memory element material may then be singulated in the same etching step that forms the upper electrodes extending in the column direction. Thus, the memory elements may be singulated in the row direction, while, at the same time, the top electrodes are defined to extend continuously in the column direction.
    Type: Application
    Filed: January 31, 2008
    Publication date: August 6, 2009
    Inventors: Derchang Kau, Greg Atwood
  • Publication number: 20080029752
    Abstract: Both a chalcogenide select device (24, 120) and a chalcogenide memory element (40, 130) are formed within vias within dielectrics (18, 22). As a result, the chalcogenides is effectively trapped within the vias and no glue or adhesion layer is needed. Moreover, delamination problems are avoided. A lance material (30) is formed within the same via (31) with the memory element (40, 130). In one embodiment, the lance material is made thinner by virtue of the presence of a sidewall spacer (28); in another embodiment no sidewall spacer is utilized. A relatively small area of contact between the chalcogenide (40) used to form a memory element (130) and the lance material (30) is achieved by providing a pin hole opening in a dielectric (34), which separates the chalcogenide and the lance material.
    Type: Application
    Filed: June 29, 2007
    Publication date: February 7, 2008
    Applicant: STMicroelectronics S.r.l.
    Inventors: Ilya Karpov, Charles Kuo, Yudong Kim, Greg Atwood
  • Publication number: 20070259479
    Abstract: A phase change memory may be formed to have a dimension that is sub-lithographic in one embodiment by forming a surface feature over the phase change material, and coating the surface feature with a mask of sub-lithographic dimensions. The horizontal portions of the mask and the surface feature may then be removed and the remaining portions of the mask may be used to define a dimension of said phase change material. Another dimension of the phase change material may be defined using an upper electrode extending over said phase change material as a mask to etch the phase change material.
    Type: Application
    Filed: July 11, 2007
    Publication date: November 8, 2007
    Inventors: Charles Kuo, Ilya Karpov, Yudong Kim, Greg Atwood
  • Patent number: 7259023
    Abstract: A phase change memory may be formed to have a dimension that is sub-lithographic in one embodiment by forming a surface feature over the phase change material, and coating the surface feature with a mask of sub-lithographic dimensions. The horizontal portions of the mask and the surface feature may then be removed and the remaining portions of the mask may be used to define a dimension of said phase change material. Another dimension of the phase change material may be defined using an upper electrode extending over said phase change material as a mask to etch the phase change material.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: August 21, 2007
    Assignee: Intel Corporation
    Inventors: Charles C. Kuo, Ilya Karpov, Yudong Kim, Greg Atwood
  • Publication number: 20070105267
    Abstract: An ovonic threshold switch may be formed of a continuous chalcogenide layer. That layer spans multiple cells, forming a phase change memory. In other words, the ovonic threshold switch may be formed of a chalcogenide layer which extends, uninterrupted, over numerous cells of a phase change memory.
    Type: Application
    Filed: November 10, 2005
    Publication date: May 10, 2007
    Inventors: Ilya Karpov, Sean Lee, Yudong Kim, Greg Atwood
  • Publication number: 20060246712
    Abstract: A dual resistance heater for a phase change material region is formed by depositing a resistive material. The heater material is then exposed to an implantation or plasma which increases the resistance of the surface of the heater material relative to the remainder of the heater material. As a result, the portion of the heater material approximate to the phase change material region is a highly effective heater because of its high resistance, but the bulk of the heater material is not as resistive and, thus, does not increase the voltage drop and the current usage of the device.
    Type: Application
    Filed: December 19, 2005
    Publication date: November 2, 2006
    Applicant: STMicroelectronics S.r.I.
    Inventors: Yudong Kim, Ilya Karpov, Charles Kuo, Greg Atwood, Maria Marangon, Tyler Lowrey