Patents by Inventor Greg Davies

Greg Davies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220206075
    Abstract: Systems and methods for prediction of state of charge (SOH), state of health (SOC) and other characteristics of batteries using acoustic signals, includes determining acoustic data at two or more states of charge and determining a reduced acoustic data set representative of the acoustic data at the two or more states of charge. The reduced acoustic data set includes time of flight (TOF) shift, total signal amplitude, or other data points related to the states of charge. Machine learning models use at least the reduced acoustic dataset in conjunction with non-acoustic data such as voltage and temperature for predicting the characteristics of any other independent battery.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 30, 2022
    Inventors: Daniel STEINGART, Greg DAVIES, Shaurjo BISWAS, Andrew HSIEH, Barry VAN TASSELL, Thomas HODSON, Shan DOU
  • Patent number: 11193979
    Abstract: Systems and methods for prediction of state of charge (SOH), state of health (SOC) and other characteristics of batteries using acoustic signals, includes determining acoustic data at two or more states of charge and determining a reduced acoustic data set representative of the acoustic data at the two or more states of charge. The reduced acoustic data set includes time of flight (TOF) shift, total signal amplitude, or other data points related to the states of charge. Machine learning models use at least the reduced acoustic dataset in conjunction with non-acoustic data such as voltage and temperature for predicting the characteristics of any other independent battery.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: December 7, 2021
    Assignees: Feasible, Inc., The Trustees of Princeton University
    Inventors: Daniel A. Steingart, Greg Davies, Shaurjo Biswas, Andrew G. Hsieh, Barry Van Tassell, Thomas Hodson, Shan Dou
  • Publication number: 20210080573
    Abstract: This disclosure provides a system and method for producing ultrasound images based on Full Waveform Inversion (FWI). The system captures acoustic/(an)elastic waves transmitted through and reflected and/or diffracted from a medium. The system performs an FWI process in a time domain in conjunction with an accurate wave propagation solver. The system produces 3D maps of physical parameters that control wave propagation, such as shear and compressional wavespeeds, mass density, attenuation, Poisson's ratio, bulk and shear moduli, impedance, and even the fourth-order elastic tensor containing up to 21 independent parameters, which are of significant diagnostic value, e.g., for medical imaging and non-destructive testing.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 18, 2021
    Applicant: The Trustees of Princeton University
    Inventors: Etienne Bachmann, Jeroen Tromp, Greg Davies, Daniel Steingart
  • Patent number: 10535901
    Abstract: The invention provides an electrolyte composition which is adapted for use in a rechargeable alkaline electrochemical cell, and especially preferably adapted for use in a rechargeable manganese zinc electrochemical cell, which electrolyte composition imparts improved performance characteristics to the rechargeable alkaline electrochemical cell. The electrolyte composition includes an electrolyte composition in which contains a potassium hydroxide and lithium hydroxide in a concentration and a respective molar ratio of about 1 molar potassium hydroxide to 2.5-3.7 (preferably 1:3) molar lithium hydroxide (1 M KOH:2.5-3.7 M LiOH). Also provided are alkaline electrochemical cells and alkaline batteries comprising the electrolyte compositions. The resultant alkaline electrochemical cells and alkaline batteries exhibit improved performance characteristics, as the electrolyte composition significantly inhibits the passivation of Zn, and may also be useful in this role in other battery chemistries.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: January 14, 2020
    Assignees: THE TRUSTEES OF PRINCETON UNIVERSITY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel Steingart, Benjamin Hertzberg, Mylad Chamoun, Greg Davies, Ying Shirley Meng
  • Publication number: 20190072614
    Abstract: Systems and methods for prediction of state of charge (SOH), state of health (SOC) and other characteristics of batteries using acoustic signals, includes determining acoustic data at two or more states of charge and determining a reduced acoustic data set representative of the acoustic data at the two or more states of charge. The reduced acoustic data set includes time of flight (TOF) shift, total signal amplitude, or other data points related to the states of charge. Machine learning models use at least the reduced acoustic dataset in conjunction with non-acoustic data such as voltage and temperature for predicting the characteristics of any other independent battery.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 7, 2019
    Inventors: Daniel A. STEINGART, Greg DAVIES, Shaurjo BISWAS, Andrew G. HSIEH, Barry VAN TASSELL, Thomas HODSON, Shan DOU
  • Publication number: 20180083320
    Abstract: The invention provides an electrolyte composition which is adapted for use in a rechargeable alkaline electrochemical cell, and especially preferably adapted for use in a rechargeable manganese zinc electrochemical cell, which electrolyte composition imparts improved performance characteristics to the rechargeable alkaline electrochemical cell. The electrolyte composition includes an electrolyte composition in which contains a potassium hydroxide and lithium hydroxide in a concentration and a respective molar ratio of about 1 molar potassium hydroxide to 2.5-3.7 (preferably 1:3) molar lithium hydroxide (1 M KOH:2.5-3.7 M LiOH). Also provided are alkaline electrochemical cells and alkaline batteries comprising the electrolyte compositions. The resultant alkaline electrochemical cells and alkaline batteries exhibit improved performance characteristics, as the electrolyte composition significantly inhibits the passivation of Zn, and may also be useful in this role in other battery chemistries.
    Type: Application
    Filed: April 5, 2016
    Publication date: March 22, 2018
    Inventors: Daniel STEINGART, Benjamin HERTZBERG, Mylad CHAMOUN, Greg DAVIES, Ying Shirley MENG
  • Patent number: 9893354
    Abstract: Disclosed are hyper-dendritic nanoporous zinc foam electrodes, viz., anodes, methods of producing the same, and methods for their use in electrochemical cells, especially in rechargeable electrical batteries.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: February 13, 2018
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Daniel A. Steingart, Mylad Chamoun, Benjamin Hertzberg, Greg Davies, Andrew G. Hsieh
  • Publication number: 20170025677
    Abstract: Disclosed are hyper-dendritic nanoporous zinc foam electrodes, viz., anodes, methods of producing the same, and methods for their use in electrochemical cells, especially in rechargeable electrical batteries.
    Type: Application
    Filed: February 22, 2016
    Publication date: January 26, 2017
    Inventors: Daniel A. STEINGART, Mylad CHAMOUN, Benjamin HERTZBERG, Greg DAVIES, Andrew G. HSIEH
  • Patent number: 6179096
    Abstract: An exhaust brake for an internal combustion engine is disclosed. The exhaust brake includes a main valve and a bypass valve for restricting the flow of exhaust gas. The main valve may be selectively closed, while the bypass valve is biased into a closed position with a selective biasing force. Closing the main valve may cause exhaust back pressure to build against the bypass valve until the biasing force is overcome. When the biasing force is surpassed by the exhaust back pressure, the bypass valve opens to relieve the back pressure. The bypass valve closes when back pressure falls below the biasing force. The biasing force may be varied to operate the exhaust brake at a maximum back pressure for a given engine speed and/or engine condition. A method of operating the exhaust brake is also disclosed.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: January 30, 2001
    Assignee: Diesel Engine Retarders, Inc.
    Inventors: Kevin Kinerson, Greg Davies, Norman Schaefer, Sotir Dodi