Patents by Inventor Greg Klowak

Greg Klowak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9508797
    Abstract: A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: November 29, 2016
    Assignee: GAN SYSTEMS INC.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Publication number: 20150318353
    Abstract: A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor.
    Type: Application
    Filed: April 8, 2015
    Publication date: November 5, 2015
    Applicant: GAN SYSTEMS, INC.
    Inventors: John ROBERTS, Ahmad MIZAN, Girvan PATTERSON, Greg KLOWAK
  • Patent number: 9105560
    Abstract: Devices and systems comprising driver circuits are disclosed for MOSFET driven, normally-on gallium nitride (GaN) power transistors. Preferably, a low power, high speed CMOS driver circuit with an integrated low voltage, lateral MOSFET driver is series coupled, in a hybrid cascode arrangement to a high voltage GaN HEMT, for improved control of noise and voltage transients. Co-packaging of a GaN transistor die and a CMOS driver die using island topology contacts, through substrate vias, and a flip-chip, stacked configuration provides interconnections with low inductance and resistance, and provides effective thermal management. Co-packaging of a CMOS input interface circuit with the CMOS driver and GaN transistor allows for a compact, integrated CMOS driver with enhanced functionality including shut-down and start-up conditioning for safer operation, particularly for high voltage and high current switching.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 11, 2015
    Assignee: GaN Systems Inc.
    Inventors: John Roberts, Greg Klowak
  • Patent number: 9064947
    Abstract: A gallium nitride (GaN) device that has greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The layout scheme, which uses island electrodes rather than finger electrodes, is shown to increase the active area density over that of conventional interdigitated structures. Ultra low on resistance transistors can be built using the island topology. Specifically, the present invention, which uses conventional GaN lateral technology and electrode spacing, provides a means to enhance cost/effective performance of all lateral GaN structures.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: June 23, 2015
    Assignee: GAN SYSTEMS INC.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Patent number: 9029866
    Abstract: A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: May 12, 2015
    Assignee: Gan Systems Inc.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Patent number: 8791508
    Abstract: A Gallium Nitride (GaN) series of devices—transistors and diodes are disclosed—that have greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The devices also include a simpler and superior flip chip connection scheme and a means to reduce the thermal resistance. A simplified fabrication process is disclosed and the layout scheme which uses island electrodes rather than finger electrodes is shown to increase the active area density by two to five times that of conventional interdigitated structures. Ultra low on resistance transistors and very low loss diodes can be built using the island topology. Specifically, the present disclosure provides a means to enhance cost/effective performance of all lateral GaN structures.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: July 29, 2014
    Assignee: GaN Systems Inc.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Publication number: 20140175454
    Abstract: Devices and systems comprising driver circuits are disclosed for MOSFET driven, normally-on gallium nitride (GaN) power transistors. Preferably, a low power, high speed CMOS driver circuit with an integrated low voltage, lateral MOSFET driver is series coupled, in a hybrid cascode arrangement to a high voltage GaN HEMT, for improved control of noise and voltage transients. Co-packaging of a GaN transistor die and a CMOS driver die using island topology contacts, through substrate vias, and a flip-chip, stacked configuration provides interconnections with low inductance and resistance, and provides effective thermal management. Co-packaging of a CMOS input interface circuit with the CMOS driver and GaN transistor allows for a compact, integrated CMOS driver with enhanced functionality including shut-down and start-up conditioning for safer operation, particularly for high voltage and high current switching.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 26, 2014
    Applicant: GAN SYSTEMS INC.
    Inventors: John ROBERTS, Greg KLOWAK
  • Publication number: 20130049010
    Abstract: A Gallium Nitride (GaN) series of devices—transistors and diodes are disclosed—that have greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The devices also include a simpler and superior flip chip connection scheme and a means to reduce the thermal resistance. A simplified fabrication process is disclosed and the layout scheme which uses island electrodes rather than finger electrodes is shown to increase the active area density by two to five times that of conventional inter-digitated structures. Ultra low on resistance transistors and very low loss diodes can be built using the island topology. Specifically, the present disclosure provides a means to enhance cost/effective performance of all lateral GaN structures.
    Type: Application
    Filed: April 13, 2011
    Publication date: February 28, 2013
    Applicant: GAN SYSTEMS INC.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Publication number: 20120138950
    Abstract: A gallium nitride (GaN) device that has greatly superior current handling ability per unit area than previously described GaN devices. The improvement is due to improved layout topology. The layout scheme, which uses island electrodes rather than finger electrodes, is shown to increase the active area density over that of conventional interdigitated structures. Ultra low on resistance transistors can be built using the island topology. Specifically, the present invention, which uses conventional GaN lateral technology and electrode spacing, provides a means to enhance cost/effective performance of all lateral GaN structures.
    Type: Application
    Filed: August 4, 2010
    Publication date: June 7, 2012
    Applicant: GAN SYSTEMS INC.
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Publication number: 20110186858
    Abstract: A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor.
    Type: Application
    Filed: February 3, 2011
    Publication date: August 4, 2011
    Inventors: John Roberts, Ahmad Mizan, Girvan Patterson, Greg Klowak
  • Patent number: 7116230
    Abstract: An asset location system comprising a plurality of location tags, each having: a location tag transmitter for controlled range transmission of a location identifier; a plurality of asset tags, each being affixed to an asset and each having: a receiver for receiving a location identifier from any of the location tags; a memory for storing at least an asset identifier and a location identifier; a transmitter for transmitting an asset signal, the asset signal including at least the asset identifier and the received location identifier; and an asset location retrieval unit, the retrieval unit having: a receiver for receiving the asset signal from any of the asset tags; a memory; a power unit; and an output means for outputting asset locations based on the received asset signal from any of the plurality of asset tags.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: October 3, 2006
    Assignee: VeriChip Corporation
    Inventor: Greg Klowak
  • Publication number: 20060012480
    Abstract: An asset location system comprising a plurality of location tags, each having: a location tag transmitter for controlled range transmission of a location identifier; a plurality of asset tags, each being affixed to an asset and each having: a receiver for receiving a location identifier from any of the location tags; a memory for storing at least an asset identifier and a location identifier; a transmitter for transmitting an asset signal, the asset signal including at least the asset identifier and the received location identifier; and an asset location retrieval unit, the retrieval unit having: a receiver for receiving the asset signal from any of the asset tags; a memory; a power unit; and an output means for outputting asset locations based on the received asset signal from any of the plurality of asset tags.
    Type: Application
    Filed: July 14, 2004
    Publication date: January 19, 2006
    Inventor: Greg Klowak