Patents by Inventor Greg Peter Friesen

Greg Peter Friesen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10027435
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: July 17, 2018
    Assignee: Alcatel Lucent
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8995833
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 31, 2015
    Assignee: Alcatel Lucent
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20150055953
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8942565
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: January 27, 2015
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20130330081
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8526812
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 3, 2013
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20120251103
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 8265481
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 11, 2012
    Assignee: Alcatel Lucent
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20110158647
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: March 10, 2011
    Publication date: June 30, 2011
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7929861
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: April 19, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20100183299
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: March 30, 2010
    Publication date: July 22, 2010
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7715721
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing the parameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: May 11, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20100028006
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Application
    Filed: October 9, 2009
    Publication date: February 4, 2010
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7630635
    Abstract: In an automatically switched optical network operating according to a wavelength plan, the wavelengths are assigned to an optical path based on availability, performance and SRS wavelength coupling reduction. First, the wavelengths are grouped in static bins based on their reach versus cost performance, and each bin assumes a ?Q of a middle wavelength. Then, the bins are moved into subsets of dynamic bins, constructed using bin constraints that account for the particulars of the respective optical path. The path is characterized taking into account the wavelength currently accessing at the end nodes, and the wavelength tandeming through the end nodes. Wavelength selection starts with the bins that satisfy the maximum number of constraints, and the wavelengths are checked sequentially against wavelength constraints; relaxed constraints are also applied when it is not possible to exactly satisfy one or more constraints.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: December 8, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: John Peter Guy, Peter David Roorda, Alan Glen Solheim, Kevan Peter Jones, Greg Peter Friesen
  • Patent number: 7224897
    Abstract: The method of pre-configuring the optical protect paths in an agile photonic network establishes a protection trail for each optical working path that may be set-up in the network. The pre-configuration is based on building an electrical layer (EXC) graph that takes into account all the connection demands in the network, and finding on this EXC graph a plurality of cycles. Next, the EXC cycles are validated at the optical layer, and are further validated against constraints. The method attempts to find an optimal cycles solution, without exhausting all possible variants.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: May 29, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: James Slezak, Greg Peter Friesen, Peter David Roorda
  • Publication number: 20030016414
    Abstract: The path selection and wavelength assignment to a selected path are performed by mapping the wavelength reach to the demand distribution (agile reach) resulting in a 50-60% increase in the network reach. The network reach is further increased (about 2.2 times) when on-line measured performance data are used for path selection and wavelength assignment. The connections may be engineered/upgraded individually, by optimizing th eparameters of the entire path or of a regenerator section of the respective path. The upgrades include changing the wavelength, adjusting the parameters of the regenerator section, controlling the launch powers, mapping a certain transmitter and/or receiver to the respective wavelength, selecting the wavelengths on a certain link so as to reduce cross-talk, increasing wavelength spacing, etc.
    Type: Application
    Filed: December 12, 2001
    Publication date: January 23, 2003
    Applicant: Innovance Networks
    Inventors: Alan Glen Solheim, Peter David Roorda, Kevan Peter Jones, Greg Peter Friesen
  • Publication number: 20020186434
    Abstract: A n×n transparent photonic switch TPS for an optical communication network uses wavelength selective elements connected in the switch fabric, to allow channels to pass, or to block channels from passing according to a network-wide routing connectivity data. The WSE may be a two-port blocker, in which case all input and output ports of the TPS are provided with 1:(n−1) splitters/combiners for providing internal routes between all pairs of input I(i) and output O(j) ports. The WSE may be assembled using wavelength selective switches WSS, or combinations of WSSs, splitters/combiners and circulators.
    Type: Application
    Filed: May 8, 2002
    Publication date: December 12, 2002
    Inventors: Peter David Roorda, Alan Glen Solheim, Greg Peter Friesen, Ryan Erskine Robert Forde