Patents by Inventor Greg Stom

Greg Stom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10658453
    Abstract: A method for manufacturing a thin film resistor (TFR) module in an integrated circuit (IC) structure may include forming a trench in a dielectric region; forming a TFR element in the trench, the TFR element including a laterally-extending TFR region and a TFR ridge extending upwardly from a laterally-extending TFR region; depositing at least one metal layer over the TFR element; and patterning the at least one metal layer and etching the at least one metal layer using a metal etch to define a pair of metal TFR heads over the TFR element, wherein the metal etch also removes at least a portion of the upwardly-extending TFR ridge. The method may also include forming at least one conductive TFR contact extending through the TFR element and in contact with a respective TFR head to thereby increase a conductive path between the respective TFR head and the TFR element.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: May 19, 2020
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Justin Hiroki Sato, Yaojian Leng, Greg Stom
  • Patent number: 10553336
    Abstract: A method for manufacturing a thin film resistor (TFR) module in an integrated circuit (IC) structure is provided. A TFR trench may be formed in an oxide layer. A resistive TFR layer may be deposited over the structure and extending into the trench. Portions of the TFR layer outside the trench may be removed by CMP to define a TFR element including a laterally-extending TFR bottom region and a plurality of TFR ridges extending upwardly from the laterally-extending TFR bottom region. At least one CMP may be performed to remove all or portions of the oxide layer and at least a partial height of the TFR ridges. A pair of spaced-apart metal interconnects may then be formed over opposing end regions of the TFR element, wherein each metal interconnect contacts a respective upwardly-extending TFR ridge, to thereby define a resistor between the metal interconnects via the TFR element.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 4, 2020
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Yaojian Leng, Justin Sato, Greg Stom
  • Patent number: 10546947
    Abstract: A method of forming a memory cell, e.g., flash memory cell, may include (a) depositing polysilicon over a substrate, (b) depositing a mask over the polysilicon, (c) etching an opening in the mask to expose a surface of the polysilicon, (d) growing a floating gate oxide at the exposed polysilicon surface, (e) depositing additional oxide above the floating gate oxide, such that the floating gate oxide and additional oxide collectively define an oxide cap, (f) removing mask material adjacent the oxide cap, (g) etching away portions of the polysilicon uncovered by the oxide cap, wherein a remaining portion of the polysilicon defines a floating gate, and (h) depositing a spacer layer over the oxide cap and floating gate. The spacer layer may includes a shielding region aligned over at least one upwardly-pointing tip region of the floating gate, which helps protect such tip region(s) from a subsequent source implant process.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: January 28, 2020
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Mel Hymas, Bomy Chen, Greg Stom, James Walls
  • Publication number: 20190392967
    Abstract: A method for manufacturing a thin film resistor (TFR) module in an integrated circuit (IC) structure is provided. A TFR trench may be formed in an oxide layer. A resistive TFR layer may be deposited over the structure and extending into the trench. Portions of the TFR layer outside the trench may be removed by CMP to define a TFR element including a laterally-extending TFR bottom region and a plurality of TFR ridges extending upwardly from the laterally-extending TFR bottom region. At least one CMP may be performed to remove all or portions of the oxide layer and at least a partial height of the TFR ridges. A pair of spaced-apart metal interconnects may then be formed over opposing end regions of the TFR element, wherein each metal interconnect contacts a respective upwardly-extending TFR ridge, to thereby define a resistor between the metal interconnects via the TFR element.
    Type: Application
    Filed: July 13, 2018
    Publication date: December 26, 2019
    Applicant: Microchip Technology Incorporated
    Inventors: Yaojian Leng, Justin Sato, Greg Stom
  • Publication number: 20190386091
    Abstract: A method for manufacturing a thin film resistor (TFR) module in an integrated circuit (IC) structure may include forming a trench in a dielectric region; forming a TFR element in the trench, the TFR element including a laterally-extending TFR region and a TFR ridge extending upwardly from a laterally-extending TFR region; depositing at least one metal layer over the TFR element; and patterning the at least one metal layer and etching the at least one metal layer using a metal etch to define a pair of metal TFR heads over the TFR element, wherein the metal etch also removes at least a portion of the upwardly-extending TFR ridge. The method may also include forming at least one conductive TFR contact extending through the TFR element and in contact with a respective TFR head to thereby increase a conductive path between the respective TFR head and the TFR element.
    Type: Application
    Filed: July 17, 2018
    Publication date: December 19, 2019
    Applicant: Microchip Technology Incorporated
    Inventors: Justin Hiroki Sato, Yaojian Leng, Greg Stom
  • Publication number: 20190097027
    Abstract: A method of forming a memory cell, e.g., flash memory cell, may include (a) depositing polysilicon over a substrate, (b) depositing a mask over the polysilicon, (c) etching an opening in the mask to expose a surface of the polysilicon, (d) growing a floating gate oxide at the exposed polysilicon surface, (e) depositing additional oxide above the floating gate oxide, such that the floating gate oxide and additional oxide collectively define an oxide cap, (f) removing mask material adjacent the oxide cap, (g) etching away portions of the polysilicon uncovered by the oxide cap, wherein a remaining portion of the polysilicon defines a floating gate, and (h) depositing a spacer layer over the oxide cap and floating gate. The spacer layer may includes a shielding region aligned over at least one upwardly-pointing tip region of the floating gate, which helps protect such tip region(s) from a subsequent source implant process.
    Type: Application
    Filed: August 23, 2018
    Publication date: March 28, 2019
    Applicant: Microchip Technology Incorporated
    Inventors: Mel Hymas, Bomy Chen, Greg Stom, James Walls
  • Patent number: 8853091
    Abstract: A method for manufacturing a semiconductor die may have the steps of:—Providing a semiconductor substrate;—Processing the substrate to a point where shallow trench isolation (STI) can be formed;—Depositing at least one underlayer having a predefined thickness on the wafer;—Depositing a masking layer on top of the underlayer;—Shaping the masking layer to have areas of predefined depths;—Applying a photolithograthy process to expose all the areas where the trenches are to be formed; and—Etching the wafer to form silicon trenches wherein the depth of a trench depends on the location with respect to the masking layer area.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: October 7, 2014
    Assignee: Microchip Technology Incorporated
    Inventors: Justin H. Sato, Brian Hennes, Greg Stom, Robert P. Ma, Walter E. Lundy
  • Publication number: 20100184295
    Abstract: A method for manufacturing a semiconductor die may have the steps of:—Providing a semiconductor substrate;—Processing the substrate to a point where shallow trench isolation (STI) can be formed;—Depositing at least one underlayer having a predefined thickness on the wafer;—Depositing a masking layer on top of the underlayer;—Shaping the masking layer to have areas of predefined depths;—Applying a photolithograthy process to expose all the areas where the trenches are to be formed; and—Etching the wafer to form silicon trenches wherein the depth of a trench depends on the location with respect to the masking layer area.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 22, 2010
    Inventors: Justin H. Sato, Brian Hennes, Greg Stom, Robert P. Ma, Walter E. Lundy